Selection of Optimized Diagnostic Approach for Cardiovascular Diseases Leveraging Dynamic Linguistic Intuitionistic Fuzzy Decision‐Making Technique

Guardado en:
Bibliografiske detaljer
Udgivet i:Engineering Reports vol. 7, no. 2 (Feb 1, 2025)
Hovedforfatter: Ameer, M.
Andre forfattere: Emam, Walid, Yousaf, Awais, Younis, Muhammad
Udgivet:
John Wiley & Sons, Inc.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3170718776
003 UK-CbPIL
022 |a 2577-8196 
024 7 |a 10.1002/eng2.70038  |2 doi 
035 |a 3170718776 
045 0 |b d20250201 
100 1 |a Ameer, M.  |u Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan 
245 1 |a Selection of Optimized Diagnostic Approach for Cardiovascular Diseases Leveraging Dynamic Linguistic Intuitionistic Fuzzy Decision‐Making Technique 
260 |b John Wiley & Sons, Inc.  |c Feb 1, 2025 
513 |a Journal Article 
520 3 |a ABSTRACT Fuzzy mathematical operations play an important role in the field of decision‐making. Decision‐making tools are being used in every field of life. Fuzzy operators are the building blocks for making a decision in the realm of uncertain information. The information is often in qualitative form which needs a qualitative approach for decision‐making rather than a quantitative one. The linguistic term sets are the mathematical tools to collect the qualitative data from experts of the fields and the conversion of linguistic data in the form linguistic intuitionistic fuzzy data is the more efficient and reliable for the process of decision making. The fuzzy aggregation operators are the best tools for the aggregation of uncertain and vague data. This work addresses a real‐world decision‐making problem of choosing the best diagnostic approach for the diagnosis of cardiovascular diseases by introducing a novel decision‐making technique with fuzzy aggregation operators in the domain of linguistic intuitionistic fuzzy (LIF) sets. Two new operators are used in this method: the Dynamic Linguistic Intuitionistic Fuzzy Dombi Weighted Averaging (DLIFDWA) operator and the Dynamic Linguistic Intuitionistic Fuzzy Dombi Weighted Geometric (DLIFDWG) operator. This work aims to identify an optimal technique for diagnosing cardiovascular illness using Dombi operations in the Linguistic Intuitionistic Fuzzy environment. The Dombi Operations are highly versatile and successful in addressing vagueness and uncertainty, making them crucial in our methodology. To demonstrate the effectiveness of the offered strategies, we have implemented the recommended operators for the selection of optimized diagnostic approach for cardiovascular diseases. This showcases the significance of these strategies in facilitating decision‐making. Ultimately, we perform a thorough analysis to showcase the reliability and uniformity of the produced procedures, comparing the provided operators with various current counterparts. 
653 |a Cardiovascular disease 
653 |a Linguistics 
653 |a Qualitative analysis 
653 |a Fuzzy sets 
653 |a Strategic planning 
653 |a Operators (mathematics) 
653 |a Fuzzy logic 
653 |a Decision making 
653 |a Comparative analysis 
700 1 |a Emam, Walid  |u Department of Statistics and Operations Research, Faculty of Science, King Saud University, Riyadh, Saudi Arabia 
700 1 |a Yousaf, Awais  |u Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan 
700 1 |a Younis, Muhammad  |u School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China 
773 0 |t Engineering Reports  |g vol. 7, no. 2 (Feb 1, 2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170718776/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3170718776/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170718776/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch