Electron Acceptor-Driven Solid Electrolyte Interphases with Elevated LiF Content for 4.7 V Lithium Metal Batteries

Spremljeno u:
Bibliografski detalji
Izdano u:Nano-Micro Letters vol. 17, no. 1 (Dec 2025), p. 163
Glavni autor: Mu, Yongbiao
Daljnji autori: Liao, Zifan, Chu, Youqi, Zhang, Qing, Zou, Lingfeng, Yang, Lin, Feng, Yitian, Ren, Haixiang, Han, Meisheng, Zeng, Lin
Izdano:
Springer Nature B.V.
Teme:
Online pristup:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3170721199
003 UK-CbPIL
022 |a 2311-6706 
022 |a 2150-5551 
024 7 |a 10.1007/s40820-025-01663-x  |2 doi 
035 |a 3170721199 
045 2 |b d20251201  |b d20251231 
100 1 |a Mu, Yongbiao  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
245 1 |a Electron Acceptor-Driven Solid Electrolyte Interphases with Elevated LiF Content for 4.7 V Lithium Metal Batteries 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Highlights<list list-type="bullet"><list-item></list-item>A tris(pentafluorophenyl)borane additive as an electron acceptor is incorporated into an ethyl methyl carbonate/fluoroethylene carbonate/lithium nitrate electrolyte.<list-item>This approach effectively engineers durable dual interfaces on both lithium metal anode and LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode, which mitigates dendritic growth and enhances cathode stability.</list-item><list-item>The additive-driven strategy enables lithium metal batteries to operate at ultra-high voltage up to 4.7 V and high mass loading of 14.0 mg cm−2 for NCM811 cathode, thus resulting in exceptional cycling performance.</list-item>High-voltage lithium (Li) metal batteries (LMBs) face substantial challenges, including Li dendrite growth and instability in high-voltage cathodes such as LiNi0.8Mn0.1Co0.1O2 (NCM811), which impede their practical applications and long-term stability. To address these challenges, tris(pentafluorophenyl)borane additive as an electron acceptor is introduced into an ethyl methyl carbonate/fluoroethylene carbonate-based electrolyte. This approach effectively engineers robust dual interfaces on the Li metal anode and the NCM811 cathode, thereby mitigating dendritic growth of Li and enhancing the stability of the cathode. This additive-driven strategy enables LMBs to operate at ultra-high voltages up to 4.7 V. Consequently, Li||Cu cells achieve a coulombic efficiency of 98.96%, and Li||Li symmetric cells extend their cycle life to an impressive 4000 h. Li||NCM811 full cells maintain a high capacity retention of 87.8% after 100 cycles at 4.7 V. Additionally, Li||LNMO full cells exhibit exceptional rate capability, delivering 132.2 mAh g−1 at 10 C and retaining 95.0% capacity after 250 cycles at 1 C and 5 V. As a result, NCM811||graphite pouch cells maintain a 93.4% capacity retention after 1100 cycles at 1 C. These findings underscore the efficacy of additive engineering in addressing Li dendrite formation and instability of cathode under high voltage, thereby paving the road for durable, high-performance LMBs. 
653 |a Engineers 
653 |a Solid electrolytes 
653 |a Cathodes 
653 |a Electrolytes 
653 |a Lithium batteries 
653 |a Stability 
653 |a Boranes 
653 |a Electrolytic cells 
653 |a Lithium 
653 |a High voltages 
700 1 |a Liao, Zifan  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
700 1 |a Chu, Youqi  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
700 1 |a Zhang, Qing  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
700 1 |a Zou, Lingfeng  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
700 1 |a Yang, Lin  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
700 1 |a Feng, Yitian  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
700 1 |a Ren, Haixiang  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
700 1 |a Han, Meisheng  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
700 1 |a Zeng, Lin  |u Southern University of Science and Technology, Shenzhen Key Laboratory of Advanced Energy Storage, Department of Mechanical and Energy Engineering, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790); Southern University of Science and Technology, SUSTech Energy Institute for Carbon Neutrality, Shenzhen, People’s Republic of China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790) 
773 0 |t Nano-Micro Letters  |g vol. 17, no. 1 (Dec 2025), p. 163 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170721199/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3170721199/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170721199/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch