Interval-valued intuitionistic fuzzy generator based low-light enhancement model for referenced image datasets

保存先:
書誌詳細
出版年:The Artificial Intelligence Review vol. 58, no. 5 (May 2025), p. 141
出版事項:
Springer Nature B.V.
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3170746225
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11138-5  |2 doi 
035 |a 3170746225 
045 2 |b d20250501  |b d20250531 
084 |a 68693  |2 nlm 
245 1 |a Interval-valued intuitionistic fuzzy generator based low-light enhancement model for referenced image datasets 
260 |b Springer Nature B.V.  |c May 2025 
513 |a Journal Article 
520 3 |a Image processing is a rapidly evolving research field with diverse applications across science and technology, including biometric systems, surveillance, traffic signal control and medical imaging. Digital images taken in low-light conditions are often affected by poor contrast and pixel detail, leading to uncertainty. Although various fuzzy based techniques have been proposed for low-light image enhancement, there remains a need for a model that can manage greater uncertainty while providing better structural information. To address this, an interval-valued intuitionistic fuzzy generator is proposed to develop an advanced low-light image enhancement model for referenced image datasets. The enhancement process involves a structural similarity index measure (SSIM) based optimization approach with respect to the parameters of the generator. For experimental validation, the Low-Light (LOL), LOLv2-Real and LOLv2-Synthetic benchmark datasets are utilized. The results are compared with several existing techniques using quality metrics such as SSIM, peak signal-to-noise ratio, absolute mean brightness error, mean absolute error, root mean squared error, blind/referenceless image spatial quality evaluator and naturalness image quality evaluator, demonstrating the superiority of the proposed model. Ultimately, the model’s performance is benchmarked against state-of-the-art methods, highlighting its enhanced efficiency. 
653 |a Traffic surveillance 
653 |a Digital imaging 
653 |a Datasets 
653 |a Errors 
653 |a Image quality 
653 |a Image enhancement 
653 |a Traffic signals 
653 |a Image processing 
653 |a Uncertainty 
653 |a Medical imaging 
653 |a Signal to noise ratio 
653 |a Control systems 
653 |a Signal processing 
653 |a Information systems 
653 |a Image processing systems 
653 |a Surveillance 
653 |a Science and technology 
653 |a Medical technology 
653 |a Naturalness 
653 |a Brightness 
653 |a Optimization 
653 |a Surveillance systems 
653 |a Research applications 
653 |a Biometrics 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 5 (May 2025), p. 141 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170746225/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170746225/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch