Deep Neural Network for Valve Fault Diagnosis Integrating Multivariate Time-Series Sensor Data

Guardado en:
Detalles Bibliográficos
Publicado en:Actuators vol. 14, no. 2 (2025), p. 70
Autor principal: Jeong, Eugene
Otros Autores: Jung-Hwan, Yang, Soo-Chul Lim
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3170834214
003 UK-CbPIL
022 |a 2076-0825 
024 7 |a 10.3390/act14020070  |2 doi 
035 |a 3170834214 
045 2 |b d20250101  |b d20251231 
084 |a 231328  |2 nlm 
100 1 |a Jeong, Eugene 
245 1 |a Deep Neural Network for Valve Fault Diagnosis Integrating Multivariate Time-Series Sensor Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Faults in valves that regulate fluid flow and pressure in industrial systems can significantly degrade system performance. In systems where multiple valves are used simultaneously, a single valve fault can reduce overall efficiency. Existing fault diagnosis methods struggle with the complexity of multivariate time-series data and unseen fault scenarios. To overcome these challenges, this study proposes a method based on a one-dimensional convolutional neural network (1D CNN) for diagnosing the location and severity of valve faults in a multi-valve system. An experimental setup was constructed with 17 sensors, including 8 pressure sensors at the inlets and outlets of 4 valves, 4 flow sensors, and 5 pressure sensors along the main pipe. Sensor data were collected to observe the sensor values corresponding to valve behavior, and foreign objects of varying sizes were inserted into the valves to simulate faults of different severities. These data were used to train and evaluate the proposed model. The proposed method achieved robust prediction accuracy (MAE: 0.0306, RMSE: 0.0629) compared to existing networks, performing on both trained and unseen fault severities. It identified the location of the faulty valve and quantified fault severity, demonstrating generalization capabilities. 
653 |a Pressure sensors 
653 |a Datasets 
653 |a Fault diagnosis 
653 |a Water supply 
653 |a Valves 
653 |a Artificial neural networks 
653 |a Sensors 
653 |a Neural networks 
653 |a Nozzles 
653 |a Support vector machines 
653 |a Multivariate analysis 
653 |a Fluid flow 
653 |a Faults 
653 |a Automation 
653 |a Inlets 
653 |a Time series 
700 1 |a Jung-Hwan, Yang 
700 1 |a Soo-Chul Lim 
773 0 |t Actuators  |g vol. 14, no. 2 (2025), p. 70 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170834214/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170834214/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170834214/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch