MARC

LEADER 00000nab a2200000uu 4500
001 3170835949
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15040367  |2 doi 
035 |a 3170835949 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Piekutowska, Magdalena  |u Department of Botany and Nature Protection, Institute of Biology, Pomeranian University in Słupsk, 22b Arciszewskiego St., 76-200 Słupsk, Poland; <email>magdalena.piekutowska@upsl.edu.pl</email> 
245 1 |a Review of Methods and Models for Potato Yield Prediction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This article provides a comprehensive overview of the development and application of statistical methods, process-based models, machine learning, and deep learning techniques in potato yield forecasting. It emphasizes the importance of integrating diverse data sources, including meteorological, phenotypic, and remote sensing data. Advances in computer technology have enabled the creation of more sophisticated models, such as mixed, geostatistical, and Bayesian models. Special attention is given to deep learning techniques, particularly convolutional neural networks, which significantly enhance forecast accuracy by analyzing complex data patterns. The article also discusses the effectiveness of other algorithms, such as Random Forest and Support Vector Machines, in capturing nonlinear relationships affecting yields. According to standards adopted in agricultural research, the Mean Absolute Percentage Error (MAPE) in the implementation of prediction issues should generally not exceed 15%. Contemporary research indicates that, through the use of advanced and accurate algorithms, the value of this error can reach levels of even less than 10 per cent, significantly increasing the efficiency of yield forecasting. Key challenges in the field include climatic variability and difficulties in obtaining accurate data on soil properties and agronomic practices. Despite these challenges, technological advancements present new opportunities for more accurate forecasting. Future research should focus on leveraging Internet of Things (IoT) technology for real-time data collection and analyzing the impact of biological variables on yield. An interdisciplinary approach, integrating insights from ecology and meteorology, is recommended to develop innovative predictive models. The exploration of machine learning methods has the potential to advance knowledge in potato yield forecasting and support sustainable agricultural practices. 
653 |a Internet of Things 
653 |a Agricultural practices 
653 |a Artificial neural networks 
653 |a Data analysis 
653 |a Machine learning 
653 |a Radiation 
653 |a Climate change 
653 |a Prediction models 
653 |a Remote sensing 
653 |a Big Data 
653 |a Bayesian analysis 
653 |a Impact analysis 
653 |a Statistical methods 
653 |a Algorithms 
653 |a Soil properties 
653 |a Forecasting 
653 |a Real time 
653 |a Agricultural production 
653 |a Crop yield 
653 |a Potatoes 
653 |a Hypothesis testing 
653 |a Regression analysis 
653 |a Generalized linear models 
653 |a Agricultural research 
653 |a Deep learning 
653 |a Data collection 
653 |a Statistical models 
653 |a Learning algorithms 
653 |a Sustainable practices 
653 |a Agriculture 
653 |a Vegetation 
653 |a Support vector machines 
653 |a Farms 
653 |a Sustainable agriculture 
653 |a Mathematical models 
653 |a Neural networks 
653 |a Resource management 
653 |a Environmental 
700 1 |a Niedbała, Gniewko  |u Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland 
773 0 |t Agriculture  |g vol. 15, no. 4 (2025), p. 367 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170835949/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170835949/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170835949/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch