Batch-to-Batch Optimization Control of Fed-Batch Fermentation Process Based on Recursively Updated Extreme Learning Machine Models

Guardat en:
Dades bibliogràfiques
Publicat a:Algorithms vol. 18, no. 2 (2025), p. 87
Autor principal: Moore, Alex
Altres autors: Zhang, Jie
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3170854555
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18020087  |2 doi 
035 |a 3170854555 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Moore, Alex 
245 1 |a Batch-to-Batch Optimization Control of Fed-Batch Fermentation Process Based on Recursively Updated Extreme Learning Machine Models 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a new method of batch-to-batch optimization control for a fed-batch fermentation process. A recursively updated extreme learning machine (ELM) neural network model is used to model a fed-batch fermentation process. ELM models have advantages over other neural networks in that they can be trained very fast and have good generalization performance. However, the ELM model loses its predictive abilities in the presence of batch-to-batch process variations or disturbances, which lead to a process–model mismatch. The recursive least squares (RLS) technique takes the model prediction error from the previous batch and uses it to update the model parameters for the next batch. This improves the performance of the model and helps it to respond to any changes in process conditions or disturbances. The updated model is used in an optimization control procedure, which generates an improved control profile for the next batch. The update of the RLS model enables the optimization control strategy to maintain a high final product quality in the presence of disturbances. The proposed batch-to-batch optimization control method is demonstrated on a simulated fed-batch fermentation process. 
653 |a Fermentation 
653 |a Neurons 
653 |a Performance enhancement 
653 |a Disturbances 
653 |a Back propagation 
653 |a Neural networks 
653 |a Oxidation 
653 |a Optimization 
653 |a Batch processes 
653 |a Recursive functions 
653 |a Fed batch 
653 |a Glucose 
653 |a Methods 
653 |a Biomass 
653 |a Metabolism 
653 |a Machine learning 
653 |a Control methods 
653 |a Ethanol 
700 1 |a Zhang, Jie 
773 0 |t Algorithms  |g vol. 18, no. 2 (2025), p. 87 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170854555/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170854555/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170854555/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch