Solution of Bin Packing Instances in Falkenauer T Class: Not So Hard
Gorde:
| Argitaratua izan da: | Algorithms vol. 18, no. 2 (2025), p. 115 |
|---|---|
| Egile nagusia: | |
| Beste egile batzuk: | , , , |
| Argitaratua: |
MDPI AG
|
| Gaiak: | |
| Sarrera elektronikoa: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiketak: |
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3170855236 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 1999-4893 | ||
| 024 | 7 | |a 10.3390/a18020115 |2 doi | |
| 035 | |a 3170855236 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231333 |2 nlm | ||
| 100 | 1 | |a Dósa, György |u Mathematical Department, Faculty of Information Technology, University of Pannonia, 8200 Veszprém, Hungary; <email>goswami.angshuman.robin@mik.uni-pannon.hu</email> (A.R.G.); <email>szalkai.istvan@mik.uni-pannon.hu</email> (I.S.) | |
| 245 | 1 | |a Solution of Bin Packing Instances in Falkenauer T Class: Not So Hard | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a In this work, the Bin Packing combinatorial optimization problem is studied from the practical side. The focus is on the Falkenauer T benchmark class, which is a collection of 80 problem instances that are considered hard to handle algorithmically. Contrary to this widely accepted view, we show that the instances of this benchmark class can be solved relatively easily, without applying any sophisticated methods like metaheuristics. A new algorithm is proposed, which can operate in two modes: either using backtrack or local search to find optimal packing. In theory, both operating modes are guaranteed to find a solution. Computational results show that all instances of the Falkenauer T benchmark class can be solved in a total of 1.18 s and 2.39 s with the two operating modes alone, or 0.2 s when running in parallel. | |
| 653 | |a Machine learning | ||
| 653 | |a Approximation | ||
| 653 | |a Algorithms | ||
| 653 | |a Packing problem | ||
| 653 | |a Combinatorial analysis | ||
| 653 | |a Logistics | ||
| 653 | |a Heuristic | ||
| 653 | |a Genetic algorithms | ||
| 653 | |a Optimization | ||
| 653 | |a Benchmarks | ||
| 653 | |a Heuristic methods | ||
| 700 | 1 | |a Éles, András |u Department of Computer Science and Systems Technology, Faculty of Information Technology, University of Pannonia, 8200 Veszprém, Hungary; <email>eles.andras@mik.uni-pannon.hu</email> (A.É.); <email>tuza.zsolt@mik.uni-pannon.hu</email> (Z.T.) | |
| 700 | 1 | |a Goswami, Angshuman Robin |u Mathematical Department, Faculty of Information Technology, University of Pannonia, 8200 Veszprém, Hungary; <email>goswami.angshuman.robin@mik.uni-pannon.hu</email> (A.R.G.); <email>szalkai.istvan@mik.uni-pannon.hu</email> (I.S.) | |
| 700 | 1 | |a Szalkai, István |u Mathematical Department, Faculty of Information Technology, University of Pannonia, 8200 Veszprém, Hungary; <email>goswami.angshuman.robin@mik.uni-pannon.hu</email> (A.R.G.); <email>szalkai.istvan@mik.uni-pannon.hu</email> (I.S.) | |
| 700 | 1 | |a Tuza, Zsolt |u Department of Computer Science and Systems Technology, Faculty of Information Technology, University of Pannonia, 8200 Veszprém, Hungary; <email>eles.andras@mik.uni-pannon.hu</email> (A.É.); <email>tuza.zsolt@mik.uni-pannon.hu</email> (Z.T.); HUN-REN Alfréd Rényi Institute of Mathematics, 1053 Budapest, Hungary | |
| 773 | 0 | |t Algorithms |g vol. 18, no. 2 (2025), p. 115 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3170855236/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3170855236/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3170855236/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |