Artificial Intelligence of Things Infrastructure for Quality Control in Cast Manufacturing Environments Shedding Light on Industry Changes

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Sciences vol. 15, no. 4 (2025), p. 2068
Hlavní autor: Rosca, Cosmina-Mihaela
Další autoři: Rădulescu, Gabriel, Stancu, Adrian
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3170857395
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15042068  |2 doi 
035 |a 3170857395 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Rosca, Cosmina-Mihaela  |u Department of Automatic Control, Computers, and Electronics, Faculty of Mechanical and Electrical Engineering, Petroleum-Gas University of Ploiesti, 39 Bucharest Avenue, 100680 Ploiesti, Romania; <email>cosmina.rosca@upg-ploiesti.ro</email> (C.-M.R.); <email>gabriel.radulescu@upg-ploiesti.ro</email> (G.R.) 
245 1 |a Artificial Intelligence of Things Infrastructure for Quality Control in Cast Manufacturing Environments Shedding Light on Industry Changes 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The transition from Industry 4.0 to 5.0 raises concerns about integrating advanced quality control measures by replacing humans. The biggest challenge of this transition is infrastructure compatibility. This paper proposes a remote collaboration solution via the Internet of Things (IoT) infrastructure. The study identifies challenges in implementing such strategies and highlights the importance of AI–human collaboration, aligning with Industry 5.0 concepts. This research integrates data from multiple visual sensors (cameras) and devices into an IoT framework to create a monitoring system. This system’s application focuses on ensuring cast quality control standards. The proposed artificial AI method provides compatibility for the entire infrastructure. The Nonconformity Indicator Algorithm (NIA) was designed for defect detection. NIA, developed using Azure Custom Vision Service, identified and classified manufactured product defects based on image analysis with an Accuracy of 98.18%, Precision of 98.44%, Recall of 96.56%, and F1-Score of 97.50%. Furthermore, an IoT-based monitoring system was designed that employs real-time sensor fusion techniques for quality control in cast manufacturing environments. The system integrates data from multiple devices, including visual sensors like the ESP32-CAM, within an IoT framework powered by Azure IoT Hub and Azure Custom Vision Service. This infrastructure enables the compatibility of devices by facilitating communication via an Azure Event Grid Trigger integrated into an Azure Function through Azure IoT Hub. 
653 |a Manufacturing 
653 |a Artificial intelligence 
653 |a Casting 
653 |a Energy consumption 
653 |a Internet of Things 
700 1 |a Rădulescu, Gabriel  |u Department of Automatic Control, Computers, and Electronics, Faculty of Mechanical and Electrical Engineering, Petroleum-Gas University of Ploiesti, 39 Bucharest Avenue, 100680 Ploiesti, Romania; <email>cosmina.rosca@upg-ploiesti.ro</email> (C.-M.R.); <email>gabriel.radulescu@upg-ploiesti.ro</email> (G.R.) 
700 1 |a Stancu, Adrian  |u Department of Business Administration, Faculty of Economic Sciences, Petroleum-Gas University of Ploiesti, 39 Bucharest Avenue, 100680 Ploiesti, Romania 
773 0 |t Applied Sciences  |g vol. 15, no. 4 (2025), p. 2068 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170857395/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170857395/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170857395/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch