Examining the Effectiveness of Non-Digital Game-Based Learning Among University Computer Science Students on the Topic of Improper Integrals

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Education Sciences vol. 15, no. 2 (2025), p. 132
Үндсэн зохиолч: Szilágyi, Szilvia
Бусад зохиолчид: Palencsár, Enikő, Körei, Attila, Török, Zsuzsanna
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3170872174
003 UK-CbPIL
022 |a 2227-7102 
022 |a 2076-3344 
024 7 |a 10.3390/educsci15020132  |2 doi 
035 |a 3170872174 
045 2 |b d20250101  |b d20251231 
084 |a 231457  |2 nlm 
100 1 |a Szilágyi, Szilvia  |u Department of Analysis, Institute of Mathematics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; <email>szilvia.szilagyi@uni-miskolc.hu</email> 
245 1 |a Examining the Effectiveness of Non-Digital Game-Based Learning Among University Computer Science Students on the Topic of Improper Integrals 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Using digital and non-digital card games to teach mathematics is a well-established didactic technique widely applied at different levels of education. Game-based learning strategies are also gaining ground in higher education, but the use of maths card games in university settings remains limited. Generation Z students are true digital natives, members of a hyper-cognitive generation with a learning profile different from any previous generation. In this paper, an original non-digital card game, Blue Yeti, is presented that supports determining the convergence property of improper integrals using the comparison theorems and the Cauchy–Maclaurin test, providing a motivational and effective way of acquiring knowledge for Gen Z students. This paper provides a comprehensive overview of the development process, rules, and gameplay mechanics of Blue Yeti, which was created as a key component of a multifunctional didactic framework. In addition, it presents findings from a two-year research study conducted among first-year bachelor’s students in computer science on the benefits of playing Blue Yeti. Quantitative studies were carried out with 63 first-year IT students using a quasi-experimental research design to measure the effectiveness of the game. A pre- and post-test design was used with the experimental group of 31 participants to evaluate the short-term effects of card game-based learning. A t-test for paired samples was used for hypothesis testing. To assess the medium-term impact, the results from the related midterm exam problems were statistically analysed, comparing the outcomes of the experimental group with those of the control group using the Mann–Whitney U-test. The results indicated that the experimental group outperformed the control group, achieving a mean score of 3.03 out of 6 on the designated midterm exam problems, compared to the control group’s mean score of 1.78. Additionally, student attitudes towards the game were measured using a mixed-method approach, which provided not only quantitative data but also qualitative information on student attitudes towards Blue Yeti, complementing the statistics on learning outcomes. The results of the study clearly support the effectiveness of the card game. 
653 |a Teaching methods 
653 |a Cognitive style 
653 |a Learning 
653 |a Computer science 
653 |a Mathematics education 
653 |a University students 
653 |a Card games 
653 |a Computer Games 
653 |a Dropout Rate 
653 |a Experiential Learning 
653 |a Influence of Technology 
653 |a Creative Thinking 
653 |a Addition 
653 |a Attention Span 
653 |a Educational Technology 
653 |a Dropout Research 
653 |a Instructional Materials 
653 |a Computer Oriented Programs 
653 |a College Freshmen 
653 |a Data Analysis 
653 |a Engineering Education 
653 |a School Holding Power 
653 |a Achievement Gains 
653 |a College Science 
653 |a Game Based Learning 
653 |a Higher Education 
653 |a Classroom Environment 
653 |a Educational Games 
653 |a Educational Strategies 
653 |a Calculus 
700 1 |a Palencsár, Enikő  |u Faculty of Mechanical Engineering and Informatics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary 
700 1 |a Körei, Attila  |u Department of Applied Mathematics, Institute of Mathematics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; <email>attila.korei@uni-miskolc.hu</email> 
700 1 |a Török, Zsuzsanna  |u Institute of Anthropological and Philosophical Studies, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary 
773 0 |t Education Sciences  |g vol. 15, no. 2 (2025), p. 132 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170872174/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170872174/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170872174/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch