A Semi-Automatic Ontology Development Framework for Knowledge Transformation of Construction Safety Requirements

Guardat en:
Dades bibliogràfiques
Publicat a:Buildings vol. 15, no. 4 (2025), p. 569
Autor principal: Wu, Zhijiang
Altres autors: Liu, Mengyao, Ma, Guofeng
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3170902956
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15040569  |2 doi 
035 |a 3170902956 
045 2 |b d20250215  |b d20250228 
084 |a 231437  |2 nlm 
100 1 |a Wu, Zhijiang  |u College of Architectural Science and Engineering, Yangzhou University, Yangzhou 225009, China 
245 1 |a A Semi-Automatic Ontology Development Framework for Knowledge Transformation of Construction Safety Requirements 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Construction safety requirements (SRs), which serve as critical information encapsulating a wide range of safety-related issues, constitute a fundamental basis for effective construction safety management. The constraints of the complex information characteristics and uncertainty of knowledge migration, however, lead to the failure to transform most of the requirement information into effective knowledge. This study proposes a multi-stage knowledge transformation framework for realizing the transformation of SRs from abstract information to canonical knowledge, and it accurately completes the knowledge transformation through document matching, knowledge extraction, and knowledge representation. Meanwhile, a semi-automated model was introduced into this study to develop a domain ontology knowledge base for SRs and to represent each type of knowledge through class definitions. The proposed framework was validated by testing project documents collected from two types of building projects, and the results show that the RD-based association rules can accurately match documents associated with SRs and adapt to match different types of sentiment attribute documents. Moreover, the improved TF-IDF algorithm improved by 20% in precision and recall, showing that the algorithm can extract tacit knowledge by combining knowledge points. Further, the domain ontology knowledge base facilitates normative documentation and representation for each type of knowledge in SRs. 
653 |a Construction accidents & safety 
653 |a Knowledge bases (artificial intelligence) 
653 |a Algorithms 
653 |a Ontology 
653 |a Tacit knowledge 
653 |a Safety 
653 |a Knowledge management 
653 |a Explicit knowledge 
653 |a Automation 
653 |a Project engineering 
653 |a Knowledge representation 
653 |a Transformations (mathematics) 
653 |a Construction industry 
653 |a Safety management 
653 |a Occupational safety 
653 |a Decision making 
653 |a Documents 
653 |a Project management 
653 |a Safety standards 
653 |a Nuclear power plants 
653 |a Semantics 
700 1 |a Liu, Mengyao  |u School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China 
700 1 |a Ma, Guofeng  |u Department of Construction Management and Real Estate, School of Economics and Management, Tongji University, Shanghai 200092, China; <email>guofengma@tongji.edu.cn</email> 
773 0 |t Buildings  |g vol. 15, no. 4 (2025), p. 569 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170902956/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170902956/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170902956/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch