Collocation Method for the Time-Fractional Generalized Kawahara Equation Using a Certain Lucas Polynomial Sequence

Guardado en:
Detalles Bibliográficos
Publicado en:Axioms vol. 14, no. 2 (2025), p. 114
Autor principal: Waleed Mohamed Abd-Elhameed
Otros Autores: Abdulrahman Khalid Al-Harbi, Omar Mazen Alqubori, Alharbi, Mohammed H, Ahmed Gamal Atta
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3170909610
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14020114  |2 doi 
035 |a 3170909610 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Waleed Mohamed Abd-Elhameed  |u Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Mathematics and Statistics, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia; <email>aalsubhi0239.stu@uj.edu.sa</email> (A.K.A.-H.); <email>ommohamad3@uj.edu.sa</email> (O.M.A.); 
245 1 |a Collocation Method for the Time-Fractional Generalized Kawahara Equation Using a Certain Lucas Polynomial Sequence 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper proposes a numerical technique to solve the time-fractional generalized Kawahara differential equation (TFGKDE). Certain shifted Lucas polynomials are utilized as basis functions. We first establish some new formulas concerned with the introduced polynomials and then tackle the equation using a suitable collocation procedure. The integer and fractional derivatives of the shifted polynomials are used with the typical collocation method to convert the equation with its governing conditions into a system of algebraic equations. The convergence and error analysis of the proposed double expansion are rigorously investigated, demonstrating its accuracy and efficiency. Illustrative examples are provided to validate the effectiveness and applicability of the proposed algorithm. 
653 |a Basis functions 
653 |a Numerical analysis 
653 |a Algorithms 
653 |a Error analysis 
653 |a Methods 
653 |a Partial differential equations 
653 |a Polynomials 
653 |a Differential equations 
653 |a Collocation methods 
700 1 |a Abdulrahman Khalid Al-Harbi  |u Department of Mathematics and Statistics, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia; <email>aalsubhi0239.stu@uj.edu.sa</email> (A.K.A.-H.); <email>ommohamad3@uj.edu.sa</email> (O.M.A.); 
700 1 |a Omar Mazen Alqubori  |u Department of Mathematics and Statistics, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia; <email>aalsubhi0239.stu@uj.edu.sa</email> (A.K.A.-H.); <email>ommohamad3@uj.edu.sa</email> (O.M.A.); 
700 1 |a Alharbi, Mohammed H  |u Department of Mathematics and Statistics, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia; <email>aalsubhi0239.stu@uj.edu.sa</email> (A.K.A.-H.); <email>ommohamad3@uj.edu.sa</email> (O.M.A.); 
700 1 |a Ahmed Gamal Atta  |u Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt; <email>ahmed_gamal@edu.asu.edu.eg</email> 
773 0 |t Axioms  |g vol. 14, no. 2 (2025), p. 114 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170909610/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170909610/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170909610/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch