Computer Architecture for Industrial Training Evaluation

Gardado en:
Detalles Bibliográficos
Publicado en:Applied System Innovation vol. 8, no. 1 (2025), p. 6
Autor Principal: Gutiérrez, Luz E
Outros autores: Guerrero, Carlos A, Betts, Mark M, Jabba, Daladier, Nieto, Wilson, López-Ospina, Héctor A
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3170915740
003 UK-CbPIL
022 |a 2571-5577 
024 7 |a 10.3390/asi8010006  |2 doi 
035 |a 3170915740 
045 2 |b d20250101  |b d20251231 
100 1 |a Gutiérrez, Luz E  |u Departamento de Ciencias de la Computación y Electrónica, Universidad de la Costa, Barranquilla 080002, Colombia; <email>lgutierr62@cuc.edu.co</email> 
245 1 |a Computer Architecture for Industrial Training Evaluation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Companies have tried to innovate in their training processes to increase their productivity indicators, reduce equipment maintenance costs, and improve the work environment. The use of Augmented Reality (AR) has been one of the implemented strategies to upgrade training processes, since it optimizes, through User Interface (UI) Design, experiences designed for users (UX) that are focused on education and training contexts. This research describes the definition and implementation of an IT architecture based on the ISO/IEC/IEEE 42010 standard using the Zachman and Kruchten frameworks. The methodological proposal presents an architecture seen from a business perspective, taking into account the strategic and technological components of the organization under a strategic alignment approach. The result is a six-layer architecture: The Government Strategy Layer (1) that accounts for the strategic component; the Business Layer (2) that presents the business management perspective; the Information Layer (4) that defines the metrics system: efficiency through task time, effectiveness through tasks completed, and satisfaction with overall satisfaction. In the Data Layer (4), the data collected with the metrics are structured in an industrial scenario with a cylinder turning process on a Winston Lathe. The experiment was carried out with two groups of 272 participants. In the Systems and Applications Layer (5), two applications were designed: a web client and a mobile application with augmented reality, and finally, the Networks and Infrastructure Layer (6), which delivers the two functional applications. The architecture validation was carried out using the mobile application. The analysis of the results showed a significance value of less than 0.001 in the three indicators: efficiency, effectiveness, and satisfaction in the Levene test and Student’s t-test. To corroborate the results, a test of equality of means with the Mann–Whitney U was carried out, showing that the three indicators presented significantly different values in the two experimental groups of this study. Thus, the group trained with the application obtained better results in the three indicators. The proposed architecture is adaptable to other training contexts. Information, data, and systems and application layers allowed for the exchange of training processes so that the augmented reality application is updated according to the new requirements. 
653 |a Augmented reality 
653 |a Software 
653 |a Working conditions 
653 |a Maintenance costs 
653 |a User experience 
653 |a Applications programs 
653 |a Turning (machining) 
653 |a Effectiveness 
653 |a Mobile computing 
653 |a Indicators 
653 |a User interfaces 
653 |a Literature reviews 
653 |a Business administration 
653 |a Visualization 
653 |a Prototypes 
653 |a Training evaluation 
700 1 |a Guerrero, Carlos A  |u Facultad de Ingeniería, Universidad del Magdalena, Santa Marta 470004, Colombia; <email>cguerreroalar@unimagdalena.edu.co</email> 
700 1 |a Betts, Mark M  |u Escuela de Arquitectura, Urbanismo y Diseño, Universidad del Norte, Barranquilla 081007, Colombia; <email>bettsm@uninorte.edu.co</email> 
700 1 |a Jabba, Daladier  |u Departamento de Ingeniería de Sistemas y Computación, Universidad del Norte, Barranquilla 081007, Colombia; <email>wnieto@uninorte.edu.co</email> 
700 1 |a Nieto, Wilson  |u Departamento de Ingeniería de Sistemas y Computación, Universidad del Norte, Barranquilla 081007, Colombia; <email>wnieto@uninorte.edu.co</email> 
700 1 |a López-Ospina, Héctor A  |u Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago 12455, Chile; <email>halopez@miuandes.cl</email> 
773 0 |t Applied System Innovation  |g vol. 8, no. 1 (2025), p. 6 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170915740/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170915740/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170915740/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch