Practice and Research Optimization Environment in Python (PyPROE)

Salvato in:
Dettagli Bibliografici
Pubblicato in:Computers vol. 14, no. 2 (2025), p. 54
Autore principale: Jaus, Christopher
Altri autori: Haynie, Kaelyn, Mulligan, Michael, Howie, Fang
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3170920813
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14020054  |2 doi 
035 |a 3170920813 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a Jaus, Christopher  |u Department of Mechanical Engineering, Liberty University, Lynchburg, VA 24515, USA; <email>ckjaus@liberty.edu</email> 
245 1 |a Practice and Research Optimization Environment in Python (PyPROE) 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Practice and Research Optimization Environment in Python (PyPROE) is a GUI-based, integrated framework designed to improve the user experience in both learning and research on engineering design optimization. Traditional optimization programs require either coding or creating complex input files, and often involve a variety of applications in sequence to arrive at the solution, which presents a steep learning curve. PyPROE addresses these challenges by providing an intuitive, user-friendly Graphical User Interface (GUI) that integrates key steps in design optimization into a seamless workflow through a single application. This integration reduces the potential for user error, lowers the barriers to entry for learners, and allows students and researchers to focus on core concepts rather than software intricacies. PyPROE’s human-centered design simplifies the learning experience and enhances productivity by automating data transfers between function modules. This automation allows users to dedicate more time to solving engineering problems rather than dealing with disjointed tools. Benchmarking and user surveys demonstrate that PyPROE offers significant usability improvements, making complex engineering optimization accessible to a broader audience. 
653 |a User interface 
653 |a Design optimization 
653 |a Simulation 
653 |a Students 
653 |a User behavior 
653 |a Design of experiments 
653 |a Design engineering 
653 |a Values 
653 |a Genetic algorithms 
653 |a Workflow 
653 |a Civil engineering 
653 |a Software utilities 
653 |a Variables 
653 |a Mathematical functions 
653 |a Learning curves 
653 |a User experience 
653 |a Graphical user interface 
653 |a Polynomials 
653 |a Human error 
700 1 |a Haynie, Kaelyn  |u Department of Computer Science, Liberty University, Lynchburg, VA 24515, USA; <email>kehaynie@liberty.edu</email> (K.H.); <email>mwmulligan@liberty.edu</email> (M.M.) 
700 1 |a Mulligan, Michael  |u Department of Computer Science, Liberty University, Lynchburg, VA 24515, USA; <email>kehaynie@liberty.edu</email> (K.H.); <email>mwmulligan@liberty.edu</email> (M.M.) 
700 1 |a Howie, Fang  |u Department of Mechanical Engineering, Liberty University, Lynchburg, VA 24515, USA; <email>ckjaus@liberty.edu</email> 
773 0 |t Computers  |g vol. 14, no. 2 (2025), p. 54 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170920813/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170920813/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170920813/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch