Optimized Random Forest Models for Rock Mass Classification in Tunnel Construction

Na minha lista:
Detalhes bibliográficos
Publicado no:Geosciences vol. 15, no. 2 (2025), p. 47
Autor principal: Yang, Bo
Outros Autores: Danial Jahed Armaghani, Fattahi, Hadi, Afrazi, Mohammad, Koopialipoor, Mohammadreza, Asteris, Panagiotis G, Khandelwal, Manoj
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3170953598
003 UK-CbPIL
022 |a 2076-3263 
024 7 |a 10.3390/geosciences15020047  |2 doi 
035 |a 3170953598 
045 2 |b d20250101  |b d20251231 
084 |a 231468  |2 nlm 
100 1 |a Yang, Bo  |u School of Resources and Safety Engineering, Central South University, Changsha 410083, China; <email>225511001@csu.edu.cn</email> 
245 1 |a Optimized Random Forest Models for Rock Mass Classification in Tunnel Construction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The accurate prediction of rock mass quality ahead of the tunnel face is crucial for optimizing tunnel construction strategies, enhancing safety, and reducing geological risks. This study developed three hybrid models using random forest (RF) optimized by moth-flame optimization (MFO), gray wolf optimizer (GWO), and Bayesian optimization (BO) algorithms to classify the surrounding rock in real time during tunnel boring machine (TBM) operations. A dataset with 544 TBM tunneling samples included key parameters such as thrust force per cutter (TFC), revolutions per minute (RPM), penetration rate (PR), advance rate (AR), penetration per revolution (PRev), and field penetration index (FPI), with rock classification based on the Rock Mass Rating (RMR) method. To address the class imbalance, the Borderline Synthetic Minority Over-Sampling Technique was applied. Performance assessments revealed the MFO-RF model’s superior performance, with training and testing accuracies of 0.992 and 0.927, respectively, and key predictors identified as PR, AR, and RPM. Additional validation using 91 data sets confirmed the reliability of the MFO-RF model on unseen data, achieving an accuracy of 0.879. A graphical user interface was also developed, enabling field engineers and technicians to make instant and reliable rock classification predictions, greatly supporting safe tunnel construction and operational efficiency. These models contribute valuable tools for real-time, data-driven decision-making in tunneling projects. 
653 |a Boring machines 
653 |a Classification 
653 |a Construction 
653 |a Rock 
653 |a Technicians 
653 |a Rock mass rating 
653 |a Thrust 
653 |a Performance testing 
653 |a Rocks 
653 |a Graphical user interface 
653 |a Sampling techniques 
653 |a Tunnel construction 
653 |a Data compression 
653 |a Tunneling 
653 |a Decision trees 
653 |a Geology 
653 |a Accuracy 
653 |a Bayesian analysis 
653 |a Artificial intelligence 
653 |a Sampling methods 
653 |a Neural networks 
653 |a Optimization 
653 |a Support vector machines 
653 |a Algorithms 
653 |a Engineering 
653 |a Tunnels 
653 |a Methods 
653 |a Performance assessment 
653 |a Probability theory 
653 |a Real time 
653 |a Optimization algorithms 
653 |a Mathematical models 
653 |a Drilling & boring machinery 
653 |a Decision making 
700 1 |a Danial Jahed Armaghani  |u School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; <email>danial.jahedarmaghani@uts.edu.au</email> 
700 1 |a Fattahi, Hadi  |u Faculty of Earth Sciences Engineering, Arak University of Technology, Arak 3818146763, Iran; <email>h.fattahi@arakut.ac.ir</email> 
700 1 |a Afrazi, Mohammad  |u Department of Mechanical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA; <email>mohammad.afrazi@student.nmt.edu</email> 
700 1 |a Koopialipoor, Mohammadreza  |u Faculty of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran 15914, Iran; <email>mr.koopialipoor@aut.ac.ir</email> 
700 1 |a Asteris, Panagiotis G  |u Computational Mechanics Laboratory, School of Pedagogical and Technological Education, Marousi, 15122 Athens, Greece; <email>asteris@aspete.gr</email> 
700 1 |a Khandelwal, Manoj  |u Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia 
773 0 |t Geosciences  |g vol. 15, no. 2 (2025), p. 47 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170953598/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170953598/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170953598/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch