Transitioning from MLOps to LLMOps: Navigating the Unique Challenges of Large Language Models

Uloženo v:
Podrobná bibliografie
Vydáno v:Information vol. 16, no. 2 (2025), p. 87
Hlavní autor: Pahune, Saurabh
Další autoři: Akhtar, Zahid
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3170981719
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16020087  |2 doi 
035 |a 3170981719 
045 2 |b d20250101  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Pahune, Saurabh  |u Cardinal Health, Dublin, OH 43017, USA; <email>saurabh.pahune@cardinalhealth.com</email> 
245 1 |a Transitioning from MLOps to LLMOps: Navigating the Unique Challenges of Large Language Models 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Large Language Models (LLMs), such as the GPT series, LLaMA, and BERT, possess incredible capabilities in human-like text generation and understanding across diverse domains, which have revolutionized artificial intelligence applications. However, their operational complexity necessitates a specialized framework known as LLMOps (Large Language Model Operations), which refers to the practices and tools used to manage lifecycle processes, including model fine-tuning, deployment, and LLMs monitoring. LLMOps is a subcategory of the broader concept of MLOps (Machine Learning Operations), which is the practice of automating and managing the lifecycle of ML models. LLM landscapes are currently composed of platforms (e.g., Vertex AI) to manage end-to-end deployment solutions and frameworks (e.g., LangChain) to customize LLMs integration and application development. This paper attempts to understand the key differences between LLMOps and MLOps, highlighting their unique challenges, infrastructure requirements, and methodologies. The paper explores the distinction between traditional ML workflows and those required for LLMs to emphasize security concerns, scalability, and ethical considerations. Fundamental platforms, tools, and emerging trends in LLMOps are evaluated to offer actionable information for practitioners. Finally, the paper presents future potential trends for LLMOps by focusing on its critical role in optimizing LLMs for production use in fields such as healthcare, finance, and cybersecurity. 
653 |a Machine learning 
653 |a Software 
653 |a Datasets 
653 |a Large language models 
653 |a Artificial intelligence 
653 |a Trends 
653 |a Cybersecurity 
653 |a Data collection 
653 |a Platforms 
653 |a Automation 
700 1 |a Akhtar, Zahid  |u Department of Network and Computer Security, State University of New York Polytechnic Institute, Utica, NY 13502, USA 
773 0 |t Information  |g vol. 16, no. 2 (2025), p. 87 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170981719/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170981719/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170981719/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch