Prescribing the Future: The Role of Artificial Intelligence in Pharmacy

Salvato in:
Dettagli Bibliografici
Pubblicato in:Information vol. 16, no. 2 (2025), p. 131
Autore principale: Allam, Hesham
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3170982136
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16020131  |2 doi 
035 |a 3170982136 
045 2 |b d20250201  |b d20250228 
084 |a 231474  |2 nlm 
100 1 |a Allam, Hesham 
245 1 |a Prescribing the Future: The Role of Artificial Intelligence in Pharmacy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Integrating artificial intelligence (AI) into pharmacy operations and drug discovery represents a groundbreaking milestone in healthcare, offering unparalleled opportunities to revolutionize medication management, accelerate drug development, and deliver truly personalized patient care. This review examines the pivotal impact of AI in critical domains, including drug discovery and development, drug repurposing, clinical trials, and pharmaceutical productivity enhancement. By significantly reducing human workload, improving precision, and shortening timelines, AI empowers the pharmaceutical industry to achieve ambitious objectives efficiently. This study delves into tools and methodologies enabling AI implementation, addressing ongoing challenges such as data privacy, algorithmic transparency, and ethical considerations while proposing actionable strategies to overcome these barriers. Furthermore, it offers insights into the future of AI in pharmacy, highlighting its potential to foster innovation, enhance efficiency, and improve patient outcomes. This research is grounded in a rigorous methodology, employing advanced data collection techniques. A comprehensive literature review was conducted using platforms such as PubMed, Semantic Scholar, and multidisciplinary databases, with AI-driven algorithms refining the retrieval of relevant and up-to-date studies. Systematic data scoping incorporated diverse perspectives from medical, pharmaceutical, and computer science domains, leveraging natural language processing for trend analysis and thematic content coding to identify patterns, challenges, and emerging applications. Modern visualization tools synthesized the findings into explicit graphical representations, offering a comprehensive view of the key role of AI in shaping the future of pharmacy and healthcare. 
653 |a Medical records 
653 |a Medical research 
653 |a Trend analysis 
653 |a Trends 
653 |a Patient compliance 
653 |a Chronic illnesses 
653 |a Drug development 
653 |a Pharmaceutical industry 
653 |a Drug stores 
653 |a Automation 
653 |a Research & development--R&D 
653 |a Pharmacists 
653 |a Data collection 
653 |a Pharmaceuticals 
653 |a Efficiency 
653 |a Clinical outcomes 
653 |a Literature reviews 
653 |a Disease management 
653 |a Machine learning 
653 |a Patient safety 
653 |a Artificial intelligence 
653 |a Health care 
653 |a Cost reduction 
653 |a Clinical trials 
653 |a Clinical decision making 
653 |a Algorithms 
653 |a Graphical representations 
653 |a Natural language processing 
653 |a Cost control 
653 |a Patient education 
773 0 |t Information  |g vol. 16, no. 2 (2025), p. 131 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3170982136/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3170982136/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3170982136/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch