Estimation of Uncertain Parameters in Single and Double Diode Models of Photovoltaic Panels Using Frilled Lizard Optimization

Salvato in:
Dettagli Bibliografici
Pubblicato in:Electronics vol. 14, no. 4 (2025), p. 796
Autore principale: Dal, Süleyman
Altri autori: Sezgin, Necmettin
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:Renewable energy sources are increasingly crucial for sustainable development. Photovoltaic (PV) systems, which convert solar energy into electricity, offer an environmentally friendly solution. Enhancing energy efficiency and minimizing environmental impacts in these systems heavily rely on parameter optimization. In this study, the Frilled Lizard Optimization (FLO) algorithm is proposed as a novel approach, integrating the newton-raphson method into the root mean square error (RMSE) objective function process to address nonlinear equations. Extensive analyses conducted on RTC France, STM6-40/36, and Photowatt PWP201 modules demonstrate the superior performance of the FLO algorithm using MATLAB R2022a software with Intel(R) Core(TM) i7-7500U CPU@ 2.70GHz 2.90 GHz 8 GB RAM. The RMSE values were calculated as 0.0030375 and 0.011538 for SDM and DDM in the RTC France dataset, 0.012036 for the STM6-40/36 dataset and 0.0097545 for the Photowatt-PWP201 dataset, respectively, indicating significantly lower error margins compared to other optimisation methods. Additionally, comprehensive evaluations were carried out using error metrics such as individual absolute error (IAE), relative error (RE) and mean absolute error (MAE), supported by detailed graphical representations of measured and predicted parameters. Current-voltage (I-V) and power-voltage (P-V) characteristic curves, as well as convergence behaviors, were systematically analyzed. This study introduces an innovative and robust solution for parameter optimization in PV systems, contributing to both theoretical and industrial applications.
ISSN:2079-9292
DOI:10.3390/electronics14040796
Fonte:Advanced Technologies & Aerospace Database