Automated Neural Network-Based Optimization for Enhancing Dynamic Range in Active Filter Design

Salvato in:
Dettagli Bibliografici
Pubblicato in:Electronics vol. 14, no. 4 (2025), p. 786
Autore principale: Daylak, Funda
Altri autori: Ozoguz, Serdar
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3171004735
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14040786  |2 doi 
035 |a 3171004735 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Daylak, Funda  |u Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul 34469, Turkey; Department of Electrical and Electronics Engineering, Altinbas University, Istanbul 34217, Turkey 
245 1 |a Automated Neural Network-Based Optimization for Enhancing Dynamic Range in Active Filter Design 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study presents an automated circuit design approach using neural networks to optimize the dynamic range (DR) of active filters, illustrated through the design of a 7th-order Chebyshev low-pass filter. Traditional design methods rely heavily on designer expertise, often resulting in time-intensive and energy-consuming processes. Two techniques are proposed: inverse modeling and forward modeling. In inverse modeling, artificial neural networks (ANNs) predict circuit parameters to meet specific performance goals. A randomly selected subset, comprising 0.05% of the 1,953,125 possible circuit configurations, was used to train and validate the model, providing an accurate representation of the entire dataset without requiring full-scale data analysis. In forward modeling, the same subset was used to train the network, which was then used to predict DR values for the remaining dataset. This approach enabled the identification of circuit parameters that resulted in optimal DR values. The results confirm the effectiveness of these techniques, with both inverse modeling and forward modeling outperforming the standard circuit design. At 160 kHz, a critical frequency for the operation of the designed filter, inverse modeling achieved a DR of 140.267 dB and forward modeling reached 136.965 dB, compared to 132.748 dB for the standard circuit designed using the traditional approach. These findings demonstrate that ANN-based methods can significantly enhance design accuracy, reduce time requirements, and improve energy efficiency in analog circuit optimization. 
653 |a Data analysis 
653 |a Design optimization 
653 |a Simulation 
653 |a Parameter identification 
653 |a Datasets 
653 |a Modelling 
653 |a Optimization techniques 
653 |a Artificial neural networks 
653 |a Analog circuits 
653 |a Signal processing 
653 |a Neural networks 
653 |a Optimization 
653 |a Circuits 
653 |a Chebyshev approximation 
653 |a Filter design (mathematics) 
653 |a Circuit design 
653 |a Automation 
653 |a Design standards 
653 |a Transistors 
653 |a Low pass filters 
653 |a Dynamic range 
653 |a Efficiency 
700 1 |a Ozoguz, Serdar  |u Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul 34469, Turkey 
773 0 |t Electronics  |g vol. 14, no. 4 (2025), p. 786 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171004735/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171004735/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171004735/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch