Coupling HEC-RAS and AI for River Morphodynamics Assessment Under Changing Flow Regimes: Enhancing Disaster Preparedness for the Ottawa River

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Hydrology vol. 12, no. 2 (2025), p. 25
मुख्य लेखक: Mohammad Uzair Anwar Qureshi
अन्य लेखक: Amiri, Afshin, Isa Ebtehaj, Guimere, Silvio José, Cunderlik, Juraj, Bonakdari, Hossein
प्रकाशित:
MDPI AG
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text + Graphics
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3171008111
003 UK-CbPIL
022 |a 2306-5338 
024 7 |a 10.3390/hydrology12020025  |2 doi 
035 |a 3171008111 
045 2 |b d20250101  |b d20251231 
100 1 |a Mohammad Uzair Anwar Qureshi  |u Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada; <email>mqure098@uottawa.ca</email> 
245 1 |a Coupling HEC-RAS and AI for River Morphodynamics Assessment Under Changing Flow Regimes: Enhancing Disaster Preparedness for the Ottawa River 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Despite significant advancements in flood forecasting using machine learning (ML) algorithms, recent events have revealed hydrological behaviors deviating from historical model development trends. The record-breaking 2019 flood in the Ottawa River basin, which exceeded the 100-year flood threshold, underscores the escalating impact of climate change on hydrological extremes. These unprecedented events highlight the limitations of traditional ML models, which rely heavily on historical data and often struggle to predict extreme floods that lack representation in past records. This calls for integrating more comprehensive datasets and innovative approaches to enhance model robustness and adaptability to changing climatic conditions. This study introduces the Next-Gen Group Method of Data Handling (Next-Gen GMDH), an innovative ML model leveraging second- and third-order polynomials to address the limitations of traditional ML models in predicting extreme flood events. Using HEC-RAS simulations, a synthetic dataset of river flow discharges was created, covering a wide range of potential future floods with return periods of up to 10,000 years, to enhance the accuracy and generalization of flood predictions under evolving climatic conditions. The Next-Gen GMDH addresses the complexity and limitations of standard GMDH by incorporating non-adjacent connections and optimizing intermediate layers, significantly reducing computational overhead while enhancing performance. The Gen GMDH demonstrated improved stability and tighter clustering of predictions, particularly for extreme flood scenarios. Testing results revealed exceptional predictive accuracy, with Mean Absolute Percentage Error (MAPE) values of 4.72% for channel width, 1.80% for channel depth, and 0.06% for water surface elevation. These results vastly outperformed the standard GMDH, which yielded MAPE values of 25.00%, 8.30%, and 0.11%, respectively. Additionally, computational complexity was reduced by approximately 40%, with a 33.88% decrease in the Akaike Information Criterion (AIC) for channel width and an impressive 581.82% improvement for channel depth. This methodology integrates hydrodynamic modeling with advanced ML, providing a robust framework for accurate flood prediction and adaptive floodplain management in a changing climate. 
651 4 |a Mississippi Valley 
651 4 |a Ottawa River 
653 |a 100 year floods 
653 |a River basins 
653 |a Polynomials 
653 |a Rivers 
653 |a Water depth 
653 |a Floodplains 
653 |a Computer applications 
653 |a Flood forecasting 
653 |a Machine learning 
653 |a Emergency preparedness 
653 |a River flow 
653 |a Climate change 
653 |a Datasets 
653 |a Flood plain management 
653 |a Climatic conditions 
653 |a Accuracy 
653 |a Clustering 
653 |a Group method of data handling 
653 |a Algorithms 
653 |a Flood predictions 
653 |a Flood management 
653 |a Floods 
653 |a Adaptability 
653 |a Predictions 
653 |a Environmental impact 
653 |a Complexity 
653 |a Synthetic data 
653 |a Hydrology 
700 1 |a Amiri, Afshin  |u Department of Soils and Agri-Food Engineering, Université Laval, Québec, QC G1V 0A6, Canada; <email>afshin.amiri.1@ulaval.ca</email> (A.A.); <email>silvio-jose.gumiere@fsaa.ulaval.ca</email> (S.J.G.) 
700 1 |a Isa Ebtehaj  |u Department of Soils and Agri-Food Engineering, Université Laval, Québec, QC G1V 0A6, Canada; <email>afshin.amiri.1@ulaval.ca</email> (A.A.); <email>silvio-jose.gumiere@fsaa.ulaval.ca</email> (S.J.G.) 
700 1 |a Guimere, Silvio José  |u Department of Soils and Agri-Food Engineering, Université Laval, Québec, QC G1V 0A6, Canada; <email>afshin.amiri.1@ulaval.ca</email> (A.A.); <email>silvio-jose.gumiere@fsaa.ulaval.ca</email> (S.J.G.) 
700 1 |a Cunderlik, Juraj  |u Mississippi Valley Conservation Authority, 10970 Hwy 7, Carleton Place, ON K7C 3P9, Canada; <email>jcunderlik@mvc.on.ca</email> 
700 1 |a Bonakdari, Hossein  |u Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada; <email>mqure098@uottawa.ca</email> 
773 0 |t Hydrology  |g vol. 12, no. 2 (2025), p. 25 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171008111/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171008111/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171008111/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch