Establishment of a Daqu Grade Classification Model Based on Computer Vision and Machine Learning

Guardat en:
Dades bibliogràfiques
Publicat a:Foods vol. 14, no. 4 (2025), p. 668
Autor principal: Zhao, Mengke
Altres autors: Han, Chaoyue, Xue, Tinghui, Ren, Chao, Nie, Xiao, Xu, Jing, Hao, Haiyong, Liu, Qifang, Jia, Liyan
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3171058134
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14040668  |2 doi 
035 |a 3171058134 
045 2 |b d20250101  |b d20251231 
084 |a 231462  |2 nlm 
100 1 |a Zhao, Mengke  |u College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; <email>z18339058292@163.com</email> (M.Z.); <email>19726869037@163.com</email> (C.H.); <email>xuetinghui569@163.com</email> (T.X.); <email>renchao2333@outlook.com</email> (C.R.); <email>13852163371@163.com</email> (X.N.); <email>x.jing@vip.163.com</email> (X.J.); Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China; Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China 
245 1 |a Establishment of a Daqu Grade Classification Model Based on Computer Vision and Machine Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The grade of Daqu significantly influences the quality of Baijiu. To address the issues of high subjectivity, substantial labor costs, and low detection efficiency in Daqu grade evaluation, this study focused on light-flavor Daqu and proposed a two-layer classification structure model based on computer vision and machine learning. Target images were extracted using three image segmentation methods: threshold segmentation, morphological fusion, and K-means clustering. Feature factors were selected through methods including mean decrease accuracy based on random forest (RF-MDA), recursive feature elimination (RFE), LASSO regression, and ridge regression. The Daqu grade evaluation model was constructed using support vector machine (SVM), logistic regression (LR), random forest (RF), k-nearest neighbor (KNN), and a stacking model. The results indicated the following: (1) In terms of image segmentation performance, the morphological fusion method achieved an accuracy, precision, recall, F1-score, and AUC of 96.67%, 95.00%, 95.00%, 0.95, and 0.96, respectively. (2) For the classification of Daqu-P, Daqu-F, and Daqu-S, RF models performed best, achieving an accuracy, precision, recall, F1-score, and AUC of 96.67%, 97.50%, 97.50%, 0.97, and 0.99, respectively. (3) In distinguishing Daqu-P from Daqu-F, the combination of the RF-MDA method and the stacking model demonstrated the best performance, with an accuracy, precision, recall, F1-score, and AUC of 90.00%, 94.44%, 85.00%, 0.89, and 0.95, respectively. This study provides theoretical and technical support for efficient and objective Daqu grade evaluation. 
653 |a Accuracy 
653 |a Classification 
653 |a Quality control 
653 |a Image processing 
653 |a Machine learning 
653 |a Computer vision 
653 |a Liquor 
653 |a Food quality 
653 |a Learning algorithms 
653 |a Recall 
653 |a Fermentation 
653 |a Regression 
653 |a Raw materials 
653 |a Cameras 
653 |a Cluster analysis 
653 |a Support vector machines 
653 |a Image segmentation 
653 |a Clustering 
653 |a Neural networks 
653 |a Algorithms 
653 |a Light 
653 |a Morphology 
653 |a Vector quantization 
653 |a Barley 
653 |a Microbiota 
700 1 |a Han, Chaoyue  |u College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; <email>z18339058292@163.com</email> (M.Z.); <email>19726869037@163.com</email> (C.H.); <email>xuetinghui569@163.com</email> (T.X.); <email>renchao2333@outlook.com</email> (C.R.); <email>13852163371@163.com</email> (X.N.); <email>x.jing@vip.163.com</email> (X.J.); Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China; Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China 
700 1 |a Xue, Tinghui  |u College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; <email>z18339058292@163.com</email> (M.Z.); <email>19726869037@163.com</email> (C.H.); <email>xuetinghui569@163.com</email> (T.X.); <email>renchao2333@outlook.com</email> (C.R.); <email>13852163371@163.com</email> (X.N.); <email>x.jing@vip.163.com</email> (X.J.); Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China; Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China 
700 1 |a Ren, Chao  |u College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; <email>z18339058292@163.com</email> (M.Z.); <email>19726869037@163.com</email> (C.H.); <email>xuetinghui569@163.com</email> (T.X.); <email>renchao2333@outlook.com</email> (C.R.); <email>13852163371@163.com</email> (X.N.); <email>x.jing@vip.163.com</email> (X.J.); Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China; Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China 
700 1 |a Nie, Xiao  |u College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; <email>z18339058292@163.com</email> (M.Z.); <email>19726869037@163.com</email> (C.H.); <email>xuetinghui569@163.com</email> (T.X.); <email>renchao2333@outlook.com</email> (C.R.); <email>13852163371@163.com</email> (X.N.); <email>x.jing@vip.163.com</email> (X.J.); Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China; Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China 
700 1 |a Xu, Jing  |u College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; <email>z18339058292@163.com</email> (M.Z.); <email>19726869037@163.com</email> (C.H.); <email>xuetinghui569@163.com</email> (T.X.); <email>renchao2333@outlook.com</email> (C.R.); <email>13852163371@163.com</email> (X.N.); <email>x.jing@vip.163.com</email> (X.J.); Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China; Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China 
700 1 |a Hao, Haiyong  |u Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang 032200, China; <email>h19628@126.com</email> 
700 1 |a Liu, Qifang  |u College of Information Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China 
700 1 |a Jia, Liyan  |u College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; <email>z18339058292@163.com</email> (M.Z.); <email>19726869037@163.com</email> (C.H.); <email>xuetinghui569@163.com</email> (T.X.); <email>renchao2333@outlook.com</email> (C.R.); <email>13852163371@163.com</email> (X.N.); <email>x.jing@vip.163.com</email> (X.J.); Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China; Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China 
773 0 |t Foods  |g vol. 14, no. 4 (2025), p. 668 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171058134/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171058134/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171058134/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch