Effective Tomato Spotted Wilt Virus Resistance Assessment Using Non-Destructive Imaging and Machine Learning

Enregistré dans:
Détails bibliographiques
Publié dans:Horticulturae vol. 11, no. 2 (2025), p. 132
Auteur principal: Kim, Sang Gyu
Autres auteurs: Sang-Deok, Lee, Woo-Moon, Lee, Hyo-Bong Jeong, Yu, Nari, Oak-Jin, Lee, Lee, Hye-Eun
Publié:
MDPI AG
Sujets:
Accès en ligne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3171058991
003 UK-CbPIL
022 |a 2311-7524 
024 7 |a 10.3390/horticulturae11020132  |2 doi 
035 |a 3171058991 
045 2 |b d20250101  |b d20251231 
100 1 |a Kim, Sang Gyu  |u Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; <email>kimsg9@korea.kr</email> (S.G.K.); <email>esdcon@korea.kr</email> (S.-D.L.); <email>wmlee65@korea.kr</email> (W.-M.L.); <email>ynr7328@korea.kr</email> (N.Y.); <email>ojlee6524@korea.kr</email> (O.-J.L.) 
245 1 |a Effective Tomato Spotted Wilt Virus Resistance Assessment Using Non-Destructive Imaging and Machine Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a There is a growing need to establish a breed reassessment system responding to tomato spotted wilt virus (TSWV) mutations. Conventional visual survey methods allow for assessing TSWV severity and disease incidence, while enzyme-linked Immunosorbent Assay (ELISA) data analysis can replace and validate visual surveys. This study proposes a non-destructive evaluation technique for TSWV using an open software platform based on image processing and machine learning. Many studies have evaluated resistance to the TSWV. However, as strains that destroy TSWV resistance emerge, an evaluation technique that can identify new genetic resources with resistance to the variants is needed. Evaluation techniques based on images and machine learning have the strength to respond quickly and accurately to the emergence of new variants. However, studies on resistance to viruses rely on empirical judgment based on visual surveys. The accuracy of the training model using Support Vector Machine (SVM), Logistic Regression (LR), and neural networks (NNs) was excellent, in the following order: NNs (0.86), LR (0.81), SVM (0.65). Meanwhile, the accuracy of the validation model was good, in the following order NN (0.84), LR (0.79), SVM (0.71). NNs’ prediction performance was verified through ELISA data analysis, showing a causal relationship between the two data sets with an R² of 0.86 with statistical significance. Imaging and NN-based TSWV resistance assessment technologies show significant potential as key tools in genetic resource reassessment systems that ensure a rapid and accurate response to the emergence of new TSWV strains. 
653 |a Infections 
653 |a Plant viruses 
653 |a Software 
653 |a Pathogens 
653 |a Disease resistance 
653 |a Deep learning 
653 |a Nondestructive testing 
653 |a Antibodies 
653 |a Tomatoes 
653 |a Leaves 
653 |a Image processing 
653 |a Machine learning 
653 |a Automation 
653 |a Statistical analysis 
653 |a Enzyme-linked immunosorbent assay 
653 |a Plant diseases 
653 |a Learning algorithms 
653 |a Agriculture 
653 |a Data analysis 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Computer vision 
653 |a Genetic resources 
653 |a Medical research 
653 |a Viruses 
653 |a Surveys 
653 |a Antigens 
653 |a Wilt 
653 |a Enzymes 
653 |a Strains (organisms) 
653 |a Environmental 
700 1 |a Sang-Deok, Lee  |u Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; <email>kimsg9@korea.kr</email> (S.G.K.); <email>esdcon@korea.kr</email> (S.-D.L.); <email>wmlee65@korea.kr</email> (W.-M.L.); <email>ynr7328@korea.kr</email> (N.Y.); <email>ojlee6524@korea.kr</email> (O.-J.L.) 
700 1 |a Woo-Moon, Lee  |u Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; <email>kimsg9@korea.kr</email> (S.G.K.); <email>esdcon@korea.kr</email> (S.-D.L.); <email>wmlee65@korea.kr</email> (W.-M.L.); <email>ynr7328@korea.kr</email> (N.Y.); <email>ojlee6524@korea.kr</email> (O.-J.L.) 
700 1 |a Hyo-Bong Jeong  |u Research Management Division, Research Policy Bureau, Rural Development Administration, Jeonju 54873, Republic of Korea; <email>bong9846@korea.kr</email> 
700 1 |a Yu, Nari  |u Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; <email>kimsg9@korea.kr</email> (S.G.K.); <email>esdcon@korea.kr</email> (S.-D.L.); <email>wmlee65@korea.kr</email> (W.-M.L.); <email>ynr7328@korea.kr</email> (N.Y.); <email>ojlee6524@korea.kr</email> (O.-J.L.) 
700 1 |a Oak-Jin, Lee  |u Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; <email>kimsg9@korea.kr</email> (S.G.K.); <email>esdcon@korea.kr</email> (S.-D.L.); <email>wmlee65@korea.kr</email> (W.-M.L.); <email>ynr7328@korea.kr</email> (N.Y.); <email>ojlee6524@korea.kr</email> (O.-J.L.) 
700 1 |a Lee, Hye-Eun  |u Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; <email>kimsg9@korea.kr</email> (S.G.K.); <email>esdcon@korea.kr</email> (S.-D.L.); <email>wmlee65@korea.kr</email> (W.-M.L.); <email>ynr7328@korea.kr</email> (N.Y.); <email>ojlee6524@korea.kr</email> (O.-J.L.) 
773 0 |t Horticulturae  |g vol. 11, no. 2 (2025), p. 132 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171058991/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171058991/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171058991/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch