A YOLO-Based Model for Detecting Stored-Grain Insects on Surface of Grain Bulks

Guardado en:
Bibliografiske detaljer
Udgivet i:Insects vol. 16, no. 2 (2025), p. 210
Hovedforfatter: Zhu, Xueyan
Andre forfattere: Li, Dandan, Zheng, Yancheng, Ma, Yiming, Yan, Xiaoping, Zhou, Qing, Wang, Qin, Zheng, Yili
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3171067369
003 UK-CbPIL
022 |a 2075-4450 
024 7 |a 10.3390/insects16020210  |2 doi 
035 |a 3171067369 
045 2 |b d20250101  |b d20251231 
084 |a 231475  |2 nlm 
100 1 |a Zhu, Xueyan  |u School of Technology, Beijing Forestry University, Beijing 100083, China; <email>xueyan0111@bjfu.edu.cn</email> (X.Z.); <email>dandanli2011@126.com</email> (D.L.) 
245 1 |a A YOLO-Based Model for Detecting Stored-Grain Insects on Surface of Grain Bulks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Simple SummaryThis study addresses the challenge of accurately and efficiently detect-ing tiny stored-grain insect pests on grain bulk surfaces, a critical task for integrated pest management (IPM). Existing detection models often struggle with small insects and require high computational resources. To overcome these limitations, the researchers developed YOLO-SGInsects, an enhanced YOLOv8s-based model incorporating a tiny-object detection layer, an asymptotic feature pyramid network, and a hybrid attention transformer module. Trained and tested on the GrainInsects dataset, which includes six insect species, the model achieved a mean average precision (mAP) of 94.2% and a counting root-mean-squared error (RMSE) of 0.7913, outperforming other mainstream detection models. The results demonstrate that YOLO-SGInsects can effectively detect and count tiny insects on grain surfaces, providing a valuable technical basis for improving IPM in granaries. This advancement has significant societal value as it enhances food security by enabling more effective pest control in grain storage facilities. Future research will focus on deploying the model on edge devices for mobile applications. 
653 |a Accuracy 
653 |a Datasets 
653 |a Applications programs 
653 |a Agricultural practices 
653 |a Granaries 
653 |a Labeling 
653 |a Mobile computing 
653 |a Laboratories 
653 |a Pest control 
653 |a Insects 
653 |a Food security 
653 |a Grain storage 
653 |a Integrated pest management 
653 |a Computer vision 
653 |a Pests 
653 |a Root-mean-square errors 
653 |a Data collection 
653 |a Methods 
653 |a Object recognition 
653 |a Storage facilities 
653 |a Environmental 
700 1 |a Li, Dandan  |u School of Technology, Beijing Forestry University, Beijing 100083, China; <email>xueyan0111@bjfu.edu.cn</email> (X.Z.); <email>dandanli2011@126.com</email> (D.L.); Sinograin Chengdu Storage Research Institute Co., Ltd., Chengdu 610091, China 
700 1 |a Zheng, Yancheng  |u China Reserve Grain Management Group Co., Ltd., Beijing 100044, China 
700 1 |a Ma, Yiming  |u Sinograin Chengdu Storage Research Institute Co., Ltd., Chengdu 610091, China 
700 1 |a Yan, Xiaoping  |u Sinograin Chengdu Storage Research Institute Co., Ltd., Chengdu 610091, China 
700 1 |a Zhou, Qing  |u Sinograin Chengdu Storage Research Institute Co., Ltd., Chengdu 610091, China 
700 1 |a Wang, Qin  |u Chengdu Sinograin Reserves Co., Ltd., Chengdu 610073, China 
700 1 |a Zheng, Yili  |u School of Technology, Beijing Forestry University, Beijing 100083, China; <email>xueyan0111@bjfu.edu.cn</email> (X.Z.); <email>dandanli2011@126.com</email> (D.L.); National Key Laboratory-Forest Resource Efficient Production, Beijing 100083, China; Key Laboratory of National Forestry and Grassland Administration on Forestry Equipment and Automation, Beijing 100083, China 
773 0 |t Insects  |g vol. 16, no. 2 (2025), p. 210 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171067369/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171067369/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171067369/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch