A Novel Model for Soil Organic Matter and Total Nitrogen Detection Based on Visible/Shortwave Near-Infrared Spectroscopy

Guardado en:
Bibliografiske detaljer
Udgivet i:Land vol. 14, no. 2 (2025), p. 329
Hovedforfatter: Qi, Jiangtao
Andre forfattere: Cheng, Panting, Zhou, Junbo, Zhang, Mengyi, Gao, Qin, He, Peng, Li, Lujun, Francis Collins Muga, Guo, Li
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3171080563
003 UK-CbPIL
022 |a 2073-445X 
024 7 |a 10.3390/land14020329  |2 doi 
035 |a 3171080563 
045 2 |b d20250101  |b d20251231 
084 |a 231528  |2 nlm 
100 1 |a Qi, Jiangtao  |u College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; <email>qijiangtao@jlu.edu.cn</email> (J.Q.); <email>chengpt23@mails.jlu.edu.cn</email> (P.C.); ; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Jilin University, Changchun 130022, China 
245 1 |a A Novel Model for Soil Organic Matter and Total Nitrogen Detection Based on Visible/Shortwave Near-Infrared Spectroscopy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Soil organic matter (SOM) and total nitrogen (TN) are critical indicators for assessing soil fertility. Although laboratory chemical analysis methods can accurately measure their contents, these techniques are time-consuming and labor-intensive. Spectral technology, characterized by its high sensitivity and convenience, has been increasingly integrated with machine learning algorithms for soil nutrient monitoring. However, the process of spectral data analysis remains complex and requires further optimization for simplicity and efficiency to improve prediction accuracy. This study proposes a novel model to enhance the accuracy of SOM and TN predictions in northeast China’s black soil. Visible/Shortwave Near-Infrared Spectroscopy (Vis/SW-NIRS) data within the 350–1070 nm range were collected, preprocessed, and dimensionality-reduced. The scores of the first nine principal components after a partial least squares (PLS) dimensionality reduction were selected as inputs, and the measured SOM and TN contents were used as outputs to build a back-propagation neural network (BPNN) model. The results show that spectral data processed by the combination of standard normal variate (SNV) and multiple scattering correction (MSC) have the best modeling performance. To improve the accuracy and stability of this model, three algorithms named random search (RS), grid search (GS), and Bayesian optimization (BO) were introduced. The results demonstrate that Vis/SW-NIRS provides reliable predictions of SOM and TN contents, with the PLS-RS-BPNN model achieving the best performance (R2 = 0.980 and 0.972, RMSE = 1.004 and 0.006 for SOM and TN, respectively). Compared to traditional models such as random forests (RF), one-dimensional convolutional neural networks (1D-CNNs), and extreme gradient boosting (XGBoost), the proposed PLS-RS-BPNN model improves R2 by 0.164–0.344 in predicting SOM and by 0.257–0.314 in predicting TN, respectively. These findings confirm the potential of Vis/SW-NIRS technology and the PLS-RS-BPNN model as effective tools for soil nutrient prediction, offering valuable insights for the application of spectral technology in sensing soil information. 
651 4 |a China 
653 |a Chemical analysis 
653 |a Environmental monitoring 
653 |a Nitrogen 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Back propagation networks 
653 |a Soil chemistry 
653 |a Feature selection 
653 |a Soil fertility 
653 |a Machine learning 
653 |a Infrared spectra 
653 |a Data analysis 
653 |a Precipitation 
653 |a Bayesian analysis 
653 |a Soils 
653 |a Infrared spectroscopy 
653 |a Short wave radiation 
653 |a Algorithms 
653 |a Methods 
653 |a Organic matter 
653 |a Accuracy 
653 |a Agricultural production 
653 |a Soil organic matter 
653 |a Soil nutrients 
653 |a Agriculture 
653 |a Data processing 
653 |a Spectrum analysis 
653 |a Predictions 
653 |a Near infrared radiation 
653 |a Temperature 
653 |a Nutrients 
653 |a Plant growth 
653 |a Mathematical models 
653 |a Neural networks 
700 1 |a Cheng, Panting  |u College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; <email>qijiangtao@jlu.edu.cn</email> (J.Q.); <email>chengpt23@mails.jlu.edu.cn</email> (P.C.); ; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Jilin University, Changchun 130022, China 
700 1 |a Zhou, Junbo  |u College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; <email>qijiangtao@jlu.edu.cn</email> (J.Q.); <email>chengpt23@mails.jlu.edu.cn</email> (P.C.); ; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Jilin University, Changchun 130022, China 
700 1 |a Zhang, Mengyi  |u College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; <email>qijiangtao@jlu.edu.cn</email> (J.Q.); <email>chengpt23@mails.jlu.edu.cn</email> (P.C.); ; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Jilin University, Changchun 130022, China 
700 1 |a Gao, Qin  |u College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; <email>qijiangtao@jlu.edu.cn</email> (J.Q.); <email>chengpt23@mails.jlu.edu.cn</email> (P.C.); ; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Jilin University, Changchun 130022, China 
700 1 |a He, Peng  |u Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China 
700 1 |a Li, Lujun  |u Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China 
700 1 |a Francis Collins Muga  |u Department of Agricultural and Rural Engineering, University of Venda, Thohoyandou 0950, South Africa 
700 1 |a Guo, Li  |u College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; <email>qijiangtao@jlu.edu.cn</email> (J.Q.); <email>chengpt23@mails.jlu.edu.cn</email> (P.C.); ; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Jilin University, Changchun 130022, China 
773 0 |t Land  |g vol. 14, no. 2 (2025), p. 329 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171080563/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171080563/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171080563/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch