A Hybrid Meta-Heuristic Approach for Solving Single-Vessel Quay Crane Scheduling with Double-Cycling

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Journal of Marine Science and Engineering vol. 13, no. 2 (2025), p. 371
Yazar: Eldemir, Fahrettin
Diğer Yazarlar: Taner, Mustafa Egemen
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3171121312
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13020371  |2 doi 
035 |a 3171121312 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Eldemir, Fahrettin  |u Department of Industrial and Systems Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia 
245 1 |a A Hybrid Meta-Heuristic Approach for Solving Single-Vessel Quay Crane Scheduling with Double-Cycling 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The escalating global demand for containerized cargo has intensified pressure on container terminals, which serve as vital nodes in maritime logistics. This study aims to enhance operational efficiency in non-automated container terminals by examining two meta-heuristic approaches—Ant Colony Optimization (ACO) and a hybrid Greedy Randomized Adaptive Search Procedure (GRASP)—Genetic Algorithm (GA)—for quay crane scheduling. Their performance is benchmarked across various problem scales, with process completion time serving as the primary metric. Based on these findings, the most effective approach is integrated into a newly developed Decision Support System (DSS) to streamline practical implementation. Statistical analyses confirm the robustness of both methods, underscoring how meta-heuristics combined with a DSS can optimize quay crane utilization, bolster maritime logistics, and ultimately boost terminal productivity. 
653 |a Quays 
653 |a Containers 
653 |a Integer programming 
653 |a Ports 
653 |a Cranes 
653 |a Optimization techniques 
653 |a Decision support systems 
653 |a Automation 
653 |a Statistical analysis 
653 |a Transport buildings, stations and terminals 
653 |a Ant colony optimization 
653 |a Heuristic 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Scheduling 
653 |a Simulation 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Problem solving 
653 |a Algorithms 
653 |a Logistics 
653 |a Statistical methods 
653 |a Completion time 
653 |a Adaptive search techniques 
653 |a Cranes & hoists 
653 |a Economic 
700 1 |a Taner, Mustafa Egemen  |u Department of Industrial Engineering, Tarsus University, Mersin 33402, Turkey; <email>metaner@tarsus.edu.tr</email> 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 2 (2025), p. 371 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171121312/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171121312/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171121312/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch