Position error decomposition and prediction of CNC machine tool under thermal–mechanical coupling loads

Збережено в:
Бібліографічні деталі
Опубліковано в::The International Journal of Advanced Manufacturing Technology vol. 137, no. 1 (Mar 2025), p. 199
Опубліковано:
Springer Nature B.V.
Предмети:
Онлайн доступ:Citation/Abstract
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3171126252
003 UK-CbPIL
022 |a 0268-3768 
022 |a 1433-3015 
024 7 |a 10.1007/s00170-025-15188-5  |2 doi 
035 |a 3171126252 
045 2 |b d20250301  |b d20250331 
245 1 |a Position error decomposition and prediction of CNC machine tool under thermal–mechanical coupling loads 
260 |b Springer Nature B.V.  |c Mar 2025 
513 |a Journal Article 
520 3 |a The feed axis system of computer numerical control (CNC) machine tool is affected by temperature changes and axial loads during the machining process, which reduces the position accuracy of CNC machine tools. Due to the complexity of processing conditions and the difficulty in error detection, the formation mechanism of position error in actual working conditions is still vague. The purpose of this paper is to investigate the evolution of position error under thermal–mechanical coupling loads and identify, evaluate, and predict the position error. First, the formation mechanism and influencing factors of position error are clarified through theoretical analysis. Secondly, based on cluster analysis, the distribution of temperature measurement points is optimized to select the thermal key points which best reflect the impact between temperatures and errors. Finally, experimental data are used to decompose and evaluate the evolution process of the position error curve and the motion state of the feed axis, radial basis function neural network (RBFNN) is employed to model and predict the position error under thermal–mechanical coupling loads. The findings of this paper can help trace the source of position error and accurately assess the operating status of the machine tool. 
653 |a Cluster analysis 
653 |a Neural networks 
653 |a Radial basis function 
653 |a Numerical controls 
653 |a Machining 
653 |a Machine tools 
653 |a Error analysis 
653 |a Axial loads 
653 |a Temperature measurement 
653 |a Error detection 
653 |a Evaluation 
653 |a Position errors 
653 |a Coupling 
653 |a Decomposition 
653 |a Load 
653 |a Accuracy 
653 |a Temperature 
653 |a Advanced manufacturing technologies 
653 |a Working conditions 
653 |a Heat 
653 |a Manufacturing 
653 |a Deformation 
653 |a Mechanical engineering 
773 0 |t The International Journal of Advanced Manufacturing Technology  |g vol. 137, no. 1 (Mar 2025), p. 199 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171126252/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch