A Combination Positioning Method for Boom-Type Roadheaders Based on Binocular Vision and Inertial Navigation

Salvato in:
Dettagli Bibliografici
Pubblicato in:Machines vol. 13, no. 2 (2025), p. 128
Autore principale: Cheng, Jiameng
Altri autori: Wang, Dongjie, Liu, Jiming, Wang, Pengjiang, Zheng, Weixiong, Li, Rui, Wu, Miao
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3171134562
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines13020128  |2 doi 
035 |a 3171134562 
045 2 |b d20250101  |b d20251231 
084 |a 231531  |2 nlm 
100 1 |a Cheng, Jiameng  |u Department of Mechanical Engineering, School of Mechanical and Electrical Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; <email>cjm@student.cumtb.edu.cn</email> (J.C.); <email>ljm@student.cumtb.edu.cn</email> (J.L.); <email>wum@cumtb.edu.cn</email> (M.W.) 
245 1 |a A Combination Positioning Method for Boom-Type Roadheaders Based on Binocular Vision and Inertial Navigation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A positioning method for a roadheader based on fiber-optic strap-down inertial navigation and binocular vision is proposed to address the issue of low measurement accuracy of the mining machine position caused by single-sensor methods in underground coal mines. A vision system for the mining machine position is constructed based on the four-point target fixed on the body of the roadheader, and the position and attitude information of the roadheader are obtained by combining the inertial navigation on the body. To deal with the problem of position detection inaccuracies caused by the accumulation of errors in inertial navigation measurements over time and disturbances from body vibrations to the combined positioning system, an Adaptive Derivative Unscented Kalman Filtering (ADUKF) algorithm is proposed, which can suppress the impact of process variance uncertainties on the filtering. The simulation results demonstrate that, compared to the Unscented Kalman Filtering algorithm, the position errors in the three directions are reduced by 20%, 20.68%, and 28.57%, respectively. Experiments demonstrate that the method can compensate for the limitations of single-measurement methods and meet the positioning accuracy requirements for underground mining standards. 
651 4 |a North Pole 
653 |a Measurement methods 
653 |a Position measurement 
653 |a Mines 
653 |a Underground mining 
653 |a Coal mining 
653 |a Cameras 
653 |a Accuracy 
653 |a Adaptive systems 
653 |a Binocular vision 
653 |a Underground mines 
653 |a Adaptability 
653 |a Sensors 
653 |a Fiber optics 
653 |a Mining machinery 
653 |a Algorithms 
653 |a Methods 
653 |a Navigation systems 
653 |a Inertial coordinates 
653 |a Vision systems 
653 |a Optics 
653 |a Coal mines 
653 |a Kalman filters 
653 |a Inertial navigation 
653 |a Position errors 
700 1 |a Wang, Dongjie  |u Department of Mechanical Engineering, School of Mechanical and Electrical Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; <email>cjm@student.cumtb.edu.cn</email> (J.C.); <email>ljm@student.cumtb.edu.cn</email> (J.L.); <email>wum@cumtb.edu.cn</email> (M.W.) 
700 1 |a Liu, Jiming  |u Department of Mechanical Engineering, School of Mechanical and Electrical Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; <email>cjm@student.cumtb.edu.cn</email> (J.C.); <email>ljm@student.cumtb.edu.cn</email> (J.L.); <email>wum@cumtb.edu.cn</email> (M.W.) 
700 1 |a Wang, Pengjiang  |u China Academy of Safety Science and Technology, Beijing 100012, China; <email>wangpjbir1994@163.com</email> 
700 1 |a Zheng, Weixiong  |u Department of Energy and Power Engineering, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China; <email>zhengwx@mail.tsinghua.edu.cn</email> 
700 1 |a Li, Rui  |u Beijing Bluevision Science and Technology Co., Ltd., Beijing 100085, China; <email>18810267380@163.com</email> 
700 1 |a Wu, Miao  |u Department of Mechanical Engineering, School of Mechanical and Electrical Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; <email>cjm@student.cumtb.edu.cn</email> (J.C.); <email>ljm@student.cumtb.edu.cn</email> (J.L.); <email>wum@cumtb.edu.cn</email> (M.W.) 
773 0 |t Machines  |g vol. 13, no. 2 (2025), p. 128 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171134562/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171134562/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171134562/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch