Detection of Apple Leaf Diseases Based on LightYOLO-AppleLeafDx

Guardado en:
Detalles Bibliográficos
Publicado en:Plants vol. 14, no. 4 (2025), p. 599
Autor principal: Zou, Hongyan
Otros Autores: Lv, Peng, Zhao, Maocheng
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3171182026
003 UK-CbPIL
022 |a 2223-7747 
024 7 |a 10.3390/plants14040599  |2 doi 
035 |a 3171182026 
045 2 |b d20250101  |b d20251231 
084 |a 231551  |2 nlm 
100 1 |a Zou, Hongyan 
245 1 |a Detection of Apple Leaf Diseases Based on LightYOLO-AppleLeafDx 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Early detection of apple leaf diseases is essential for enhancing orchard management efficiency and crop yield. This study introduces LightYOLO-AppleLeafDx, a lightweight detection framework based on an improved YOLOv8 model. Key enhancements include the incorporation of Slim-Neck, SPD-Conv, and SAHead modules, which optimize the model’s structure to improve detection accuracy and recall while significantly reducing the number of parameters and computational complexity. Ablation studies validate the positive impact of these modules on model performance. The final LightYOLO-AppleLeafDx achieves a precision of 0.930, mAP@0.5 of 0.965, and mAP@0.5:0.95 of 0.587, surpassing the original YOLOv8n and other benchmark models. The model is highly lightweight, with a size of only 5.2 MB, and supports real-time detection at 107.2 frames per second. When deployed on an RV1103 hardware platform via an NPU-compatible framework, it maintains a detection speed of 14.8 frames per second, demonstrating practical applicability. These results highlight the potential of LightYOLO-AppleLeafDx as an efficient and lightweight solution for precision agriculture, addressing the need for accurate and real-time apple leaf disease detection. 
651 4 |a China 
653 |a Crop yield 
653 |a Accuracy 
653 |a Datasets 
653 |a Plant diseases 
653 |a Frames (data processing) 
653 |a Apples 
653 |a Disease 
653 |a Precision agriculture 
653 |a Frames per second 
653 |a Neural networks 
653 |a Ablation 
653 |a Fruits 
653 |a Modules 
653 |a Leaves 
653 |a Real time 
653 |a Disease detection 
700 1 |a Lv, Peng 
700 1 |a Zhao, Maocheng 
773 0 |t Plants  |g vol. 14, no. 4 (2025), p. 599 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171182026/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171182026/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171182026/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch