3DVT: Hyperspectral Image Classification Using 3D Dilated Convolution and Mean Transformer

Guardat en:
Dades bibliogràfiques
Publicat a:Photonics vol. 12, no. 2 (2025), p. 146
Autor principal: Su, Xinling
Altres autors: Shao, Jingbo
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3171182082
003 UK-CbPIL
022 |a 2304-6732 
024 7 |a 10.3390/photonics12020146  |2 doi 
035 |a 3171182082 
045 2 |b d20250101  |b d20251231 
084 |a 231546  |2 nlm 
100 1 |a Su, Xinling 
245 1 |a 3DVT: Hyperspectral Image Classification Using 3D Dilated Convolution and Mean Transformer 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Hyperspectral imaging and laser technology both rely on different wavelengths of light to analyze the characteristics of materials, revealing their composition, state, or structure through precise spectral data. In hyperspectral image (HSI) classification tasks, the limited number of labeled samples and the lack of feature extraction diversity often lead to suboptimal classification performance. Furthermore, traditional convolutional neural networks (CNNs) primarily focus on local features in hyperspectral data, neglecting long-range dependencies and global context. To address these challenges, this paper proposes a novel model that combines CNNs with an average pooling Vision Transformer (ViT) for hyperspectral image classification. The model utilizes three-dimensional dilated convolution and two-dimensional convolution to extract multi-scale spatial–spectral features, while ViT was employed to capture global features and long-range dependencies in the hyperspectral data. Unlike the traditional ViT encoder, which uses linear projection, our model replaces it with average pooling projection. This change enhances the extraction of local features and compensates for the ViT encoder’s limitations in local feature extraction. This hybrid approach effectively combines the local feature extraction strengths of CNNs with the long-range dependency handling capabilities of Transformers, significantly improving overall performance in hyperspectral image classification tasks. Additionally, the proposed method holds promise for the classification of fiber laser spectra, where high precision and spectral analysis are crucial for distinguishing between different fiber laser characteristics. Experimental results demonstrate that the CNN-Transformer model substantially improves classification accuracy on three benchmark hyperspectral datasets. The overall accuracies achieved on the three public datasets—IP, PU, and SV—were 99.35%, 99.31%, and 99.66%, respectively. These advancements offer potential benefits for a wide range of applications, including high-performance optical fiber sensing, laser medicine, and environmental monitoring, where accurate spectral classification is essential for the development of advanced systems in fields such as laser medicine and optical fiber technology. 
653 |a Feature extraction 
653 |a Environmental monitoring 
653 |a Artificial neural networks 
653 |a Spectrum analysis 
653 |a Image processing 
653 |a Classification 
653 |a Coders 
653 |a Fiber technology 
653 |a Accuracy 
653 |a Datasets 
653 |a Spectral analysis 
653 |a Remote sensing 
653 |a Spectral classification 
653 |a Lasers 
653 |a Neural networks 
653 |a Optical fibers 
653 |a Image classification 
653 |a Methods 
653 |a Wavelengths 
653 |a Fiber lasers 
653 |a Semantics 
653 |a Hyperspectral imaging 
700 1 |a Shao, Jingbo 
773 0 |t Photonics  |g vol. 12, no. 2 (2025), p. 146 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171182082/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171182082/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171182082/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch