Personalized FedM2former: An Innovative Approach Towards Federated Multi-Modal 3D Object Detection for Autonomous Driving

Enregistré dans:
Détails bibliographiques
Publié dans:Processes vol. 13, no. 2 (2025), p. 449
Auteur principal: Zhao, Liang
Autres auteurs: Li, Xuan, Jia, Xin, Fu, Lulu
Publié:
MDPI AG
Sujets:
Accès en ligne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3171217700
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13020449  |2 doi 
035 |a 3171217700 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Zhao, Liang  |u College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; <email>l19561344399@163.com</email> (X.L.); <email>jx15090349719@163.com</email> (X.J.); <email>fll9681@163.com</email> (L.F.); Henan Key Laboratory of Grain Storage Information Intelligent Perception and Decision Making, Henan University of Technology, Zhengzhou 450001, China 
245 1 |a Personalized FedM<sup>2</sup>former: An Innovative Approach Towards Federated Multi-Modal 3D Object Detection for Autonomous Driving 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the swift evolution of artificial intelligence in the automotive sector, autonomous driving has ascended as a pivotal research frontier for automotive manufacturers. Environmental perception, as the cornerstone of autonomous driving, necessitates innovative solutions to address the intricate challenges posed by data sensitivity during vehicle operations. To this end, federated learning (FL) emerges as a promising paradigm, offering a balance between data privacy preservation and performance optimization for perception tasks. In this paper, we pioneer the integration of FL into 3D object detection, presenting personalized FedM2former, a novel multi-modal framework tailored for autonomous driving. This framework aims to elevate the accuracy and robustness of 3D object detection while mitigating concerns over data sensitivity. Recognizing the heterogeneity inherent in user data, we introduce a personalization strategy leveraging stochastic gradient descent optimization prior to local training, ensuring the global model’s adaptability and generalization across diverse user vehicles. Furthermore, to address the sparsity of point cloud data, we innovate the attention layer within our detection model. Our balanced window attention mechanism innovatively processes both point cloud and image data in parallel within each window, significantly enhancing model efficiency and performance. Extensive experiments on benchmark datasets, including nuScenes, ONCE, and Waymo, demonstrate the efficacy of our approach. Notably, we achieve state-of-the-art results with test mAP and NDS of 71.2% and 73.6% on nuScenes, 67.14% test mAP on ONCE, and 83.9% test mAP and 81.8% test mAPH on Waymo, respectively. These outcomes underscore the feasibility of our method in enhancing object detection performance and speed while safeguarding privacy and data security, positioning Personalized FedM2former as a significant advancement in the autonomous driving landscape. 
653 |a Driving 
653 |a Artificial intelligence 
653 |a Sensitivity 
653 |a Sensors 
653 |a Autonomous vehicles 
653 |a Privacy 
653 |a Optimization 
653 |a Attention 
653 |a Perception 
653 |a Telematics 
653 |a Object recognition 
653 |a Federated learning 
653 |a Environmental perception 
653 |a Customization 
653 |a Adaptability 
653 |a Heterogeneity 
653 |a Evolution 
700 1 |a Li, Xuan  |u College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; &lt;email&gt;l19561344399@163.com&lt;/email&gt; (X.L.); &lt;email&gt;jx15090349719@163.com&lt;/email&gt; (X.J.); &lt;email&gt;fll9681@163.com&lt;/email&gt; (L.F.) 
700 1 |a Jia, Xin  |u College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; &lt;email&gt;l19561344399@163.com&lt;/email&gt; (X.L.); &lt;email&gt;jx15090349719@163.com&lt;/email&gt; (X.J.); &lt;email&gt;fll9681@163.com&lt;/email&gt; (L.F.) 
700 1 |a Fu, Lulu  |u College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; &lt;email&gt;l19561344399@163.com&lt;/email&gt; (X.L.); &lt;email&gt;jx15090349719@163.com&lt;/email&gt; (X.J.); &lt;email&gt;fll9681@163.com&lt;/email&gt; (L.F.) 
773 0 |t Processes  |g vol. 13, no. 2 (2025), p. 449 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171217700/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171217700/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171217700/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch