An SVM-Based Anomaly Detection Method for Power System Security Analysis Using Particle Swarm Optimization and t-SNE for High-Dimensional Data Classification

Guardado en:
Detalles Bibliográficos
Publicado en:Processes vol. 13, no. 2 (2025), p. 549
Autor principal: Ye Tao
Otros Autores: Jiongcheng Yan, Niu, Enquan, Zhai, Pengming, Zhang, Shuolin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3171221069
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13020549  |2 doi 
035 |a 3171221069 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Ye Tao  |u School of Electrical Engineering, Shandong University, Jinan 250061, China; <email>taoye@mail.sdu.edu.cn</email> (Y.T.); <email>zhangsl@mail.sdu.edu.cn</email> (S.Z.) 
245 1 |a An SVM-Based Anomaly Detection Method for Power System Security Analysis Using Particle Swarm Optimization and t-SNE for High-Dimensional Data Classification 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Research on the detection and identification of anomalies in electric power systems is crucial for ensuring their secure and stable operation. Anomaly detection models based on Support Vector Machines (SVMs) effectively process high-dimensional data while maintaining strong generalization capabilities. However, the performance of SVMs significantly depends on the choice of parameters, where improper parameter settings can lead to overfitting or underfitting, consequently decreasing the accuracy of anomaly detection. Furthermore, the dimensions of anomaly data in electric power systems are often unknown, making it difficult for existing methods to maintain a high precision in multidimensional data detection, and the segmentation of such data lacks intuitive display. In response, this article proposes an improved SVM model for electric power system anomaly detection, enhanced by parameter optimization algorithms, alongside a method for nonlinear dimension reduction and visualization using t-Distributed Stochastic Neighbor Embedding (t-SNE). Initially, traditional SVM parameters are optimized using the following four algorithms: Grid Search (GS), Particle Swarm Optimization (PSO), Genetic Algorithms (GAs), and Artificial Bee Colony (ABC) algorithms, in order to establish the optimized SVM model for electric power system anomaly detection. Finally, the effectiveness of the proposed method is verified through simulations. The simulation results indicate that, in the IEEE-14 node system case study, the accuracy for normal data reaches 97.58%, the accuracy for load step change detection reaches 99.52%, the accuracy for bad data detection reaches 99.92%, and the accuracy under fault conditions reaches 100%. 
653 |a Skewness 
653 |a Accuracy 
653 |a Machine learning 
653 |a Particle swarm optimization 
653 |a Research methodology 
653 |a Swarm intelligence 
653 |a Deep learning 
653 |a Genetic algorithms 
653 |a Artificial intelligence 
653 |a Forecasting 
653 |a Algorithms 
653 |a Support vector machines 
653 |a Electricity distribution 
653 |a Optimization 
653 |a Electric power 
653 |a Multidimensional data 
653 |a Anomalies 
653 |a Multidimensional methods 
653 |a Parameters 
653 |a Embedding 
653 |a Electric power systems 
653 |a Statistical analysis 
700 1 |a Jiongcheng Yan  |u Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250061, China 
700 1 |a Niu, Enquan  |u Shandong Luruan Digital Technology Co., Ltd., Jinan 250101, China; <email>niuenquan369@hotmail.com</email> 
700 1 |a Zhai, Pengming  |u Wenshan Power Supply Bureau of Yunnan Power Grid Co., Ltd., Wenshan 663000, China; <email>zhaipm0303@hotmail.com</email> 
700 1 |a Zhang, Shuolin  |u School of Electrical Engineering, Shandong University, Jinan 250061, China; <email>taoye@mail.sdu.edu.cn</email> (Y.T.); <email>zhangsl@mail.sdu.edu.cn</email> (S.Z.) 
773 0 |t Processes  |g vol. 13, no. 2 (2025), p. 549 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171221069/abstract/embedded/KOLE7RPJVUKQAXRX?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171221069/fulltextwithgraphics/embedded/KOLE7RPJVUKQAXRX?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171221069/fulltextPDF/embedded/KOLE7RPJVUKQAXRX?source=fedsrch