Study of Change-Point Detection and Applications Based on Several Statistical Methods

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Symmetry vol. 17, no. 2 (2025), p. 302
Κύριος συγγραφέας: Tian, Fenglin
Άλλοι συγγραφείς: Yue Qi, Wang, Yong, Tian, Boping
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3171256753
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17020302  |2 doi 
035 |a 3171256753 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Tian, Fenglin  |u School of Mathematics, Harbin Institute of Technology, Harbin 150001, China; <email>tfl_hit@126.com</email> (F.T.); 
245 1 |a Study of Change-Point Detection and Applications Based on Several Statistical Methods 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In the current global context of economic integration, unexpected events have an important influence in the financial field. In 2020, the “COVID-19” outbreak triggered financial turmoil throughout the whole country and even in the global market. In the wake of this era, how to sum up past developments and predict future development through change-point detection is particularly important. In this paper, four methods for detecting change-points are presented: the likelihood ratio method, least squares method, CUSUM method, and local comparison method. Considering that Bernstein polynomials have worked well in density function approximation, the multi-dimensional Bernstein polynomials are presented. The study applies multiple change-point detection methods to determine the most suitable degree of freedom <inline-formula>mj</inline-formula> for multi-dimensional Bernstein models, after which various rewriting expressions can be obtained. Next, “COVID-19” data and money supply data are used for change-point detection with good results. Then, we focus on conducting change-point testing on the S&P 500 index and SSE 50 index, indicating strong symmetry when major crisis events occur. All analyses indicate that change-point detection plays an important role in identifying major crisis events and financial shocks. 
651 4 |a United States--US 
653 |a Random variables 
653 |a Hypotheses 
653 |a Foreign exchange markets 
653 |a Normal distribution 
653 |a Maximum likelihood method 
653 |a Polynomials 
653 |a Least squares method 
653 |a Statistical methods 
653 |a Approximation 
653 |a Earthquakes 
653 |a Multidimensional methods 
653 |a Time series 
653 |a Density functions 
653 |a Test methods 
653 |a Economics 
653 |a Statistical analysis 
653 |a Likelihood ratio 
700 1 |a Yue Qi  |u Student Affairs Department, ShanghaiTech University, Shanghai 201210, China 
700 1 |a Wang, Yong  |u School of Mathematics, Harbin Institute of Technology, Harbin 150001, China; &lt;email&gt;tfl_hit@126.com&lt;/email&gt; (F.T.); 
700 1 |a Tian, Boping  |u School of Mathematics, Harbin Institute of Technology, Harbin 150001, China; &lt;email&gt;tfl_hit@126.com&lt;/email&gt; (F.T.); 
773 0 |t Symmetry  |g vol. 17, no. 2 (2025), p. 302 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171256753/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171256753/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171256753/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch