Chinese medical named entity recognition utilizing entity association and gate context awareness

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 2 (Feb 2025), p. e0319056
Autor principal: Yang, Yan
Otros Autores: Kang, Yufeng, Huang, Wenbo, Cai, Xudong
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3171259577
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0319056  |2 doi 
035 |a 3171259577 
045 2 |b d20250201  |b d20250228 
084 |a 174835  |2 nlm 
100 1 |a Yang, Yan 
245 1 |a Chinese medical named entity recognition utilizing entity association and gate context awareness 
260 |b Public Library of Science  |c Feb 2025 
513 |a Journal Article 
520 3 |a Recognizing medical named entities is a crucial aspect of applying deep learning in the medical domain. Automated methods for identifying specific entities from medical literature or other texts can enhance the efficiency and accuracy of information processing, elevate medical service quality, and aid clinical decision-making. Nonetheless, current methods exhibit limitations in contextual awareness and insufficient consideration of contextual relevance and interactions between entities. In this study, we initially encode medical text inputs using the Chinese pre-trained RoBERTa-wwm-ext model to extract comprehensive contextual features and semantic information. Subsequently, we employ recurrent neural networks in conjunction with the multi-head attention mechanism as the primary gating structure for parallel processing and capturing inter-entity dependencies. Finally, we leverage conditional random fields in combination with the cross-entropy loss function to enhance entity recognition accuracy and ensure label sequence consistency. Extensive experiments conducted on datasets including MCSCSet and CMeEE demonstrate that the proposed model attains F1 scores of 91.90% and 64.36% on the respective datasets, outperforming other related models. These findings confirm the efficacy of our method for recognizing named entities in Chinese medical texts. 
653 |a Health services 
653 |a Parallel processing 
653 |a Dictionaries 
653 |a Accuracy 
653 |a Data processing 
653 |a Deep learning 
653 |a Conditional random fields 
653 |a Neural networks 
653 |a Automation 
653 |a Machine learning 
653 |a Terminology 
653 |a Datasets 
653 |a Research methodology 
653 |a Texts 
653 |a Recognition 
653 |a Support vector machines 
653 |a Medical research 
653 |a Recurrent neural networks 
653 |a Information processing 
653 |a Decision making 
653 |a Semantics 
653 |a Economic 
700 1 |a Kang, Yufeng 
700 1 |a Huang, Wenbo 
700 1 |a Cai, Xudong 
773 0 |t PLoS One  |g vol. 20, no. 2 (Feb 2025), p. e0319056 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171259577/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3171259577/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171259577/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch