Localization of Acoustic Emission Source in Rock Using SMIGWO Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Coal Science & Technology vol. 12, no. 1 (Dec 2025), p. 19
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3171547601
003 UK-CbPIL
022 |a 2095-8293 
022 |a 2198-7823 
024 7 |a 10.1007/s40789-025-00751-y  |2 doi 
035 |a 3171547601 
045 2 |b d20251201  |b d20251231 
245 1 |a Localization of Acoustic Emission Source in Rock Using SMIGWO Algorithm 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a The Grey Wolf Optimization (GWO) algorithm is acknowledged as an effective method for rock acoustic emission localization. However, the conventional GWO algorithm encounters challenges related to solution accuracy and convergence speed. To address these concerns, this paper develops a Simplex Improved Grey Wolf Optimizer (SMIGWO) algorithm. The randomly generating initial populations are replaced with the iterative chaotic sequences. The search process is optimized using the convergence factor optimization algorithm based on the inverse incomplete Г function. The simplex method is utilized to address issues related to poorly positioned grey wolves. Experimental results demonstrate that, compared to the conventional GWO algorithm-based AE localization algorithm, the proposed algorithm achieves a higher solution accuracy and showcases a shorter search time. Additionally, the algorithm demonstrates fewer convergence steps, indicating superior convergence efficiency. These findings highlight that the proposed SMIGWO algorithm offers enhanced solution accuracy, stability, and optimization performance. The benefits of the SMIGWO algorithm extend universally across various materials, such as aluminum, granite, and sandstone, showcasing consistent effectiveness irrespective of material type. Consequently, this algorithm emerges as a highly effective tool for identifying acoustic emission signals and improving the precision of rock acoustic emission localization. 
653 |a Rocks 
653 |a Sandstone 
653 |a Algorithms 
653 |a Accuracy 
653 |a Aluminum 
653 |a Localization 
653 |a Acoustics 
653 |a Acoustic emission 
653 |a Optimization 
653 |a Economic 
773 0 |t International Journal of Coal Science & Technology  |g vol. 12, no. 1 (Dec 2025), p. 19 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171547601/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171547601/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch