Artificial Neural Network Reveals the Role of Transport Proteins in Rhodopseudomonas palustris CGA009 During Lignin Breakdown Product Catabolism

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:bioRxiv (Feb 27, 2025)
Հիմնական հեղինակ: Chowdhury, Niaz B
Այլ հեղինակներ: Kathol, Mark, Nabia Shahreen, Saha, Rajib
Հրապարակվել է:
Cold Spring Harbor Laboratory Press
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full text outside of ProQuest
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3171959504
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.02.21.639544  |2 doi 
035 |a 3171959504 
045 0 |b d20250227 
100 1 |a Chowdhury, Niaz B 
245 1 |a Artificial Neural Network Reveals the Role of Transport Proteins in Rhodopseudomonas palustris CGA009 During Lignin Breakdown Product Catabolism 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 27, 2025 
513 |a Working Paper 
520 3 |a Rhodopseudomonas palustris, a versatile bacterium with diverse biotechnological applications, can effectively breakdown lignin, a complex and abundant polymer in plant biomass. This study investigates the metabolic response of R. palustris when catabolizing various lignin breakdown products (LBPs), including the monolignols p coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, p coumarate, sodium ferulate, and kraft lignin. Transcriptomics and proteomics data were generated for those specific LBP breakdown conditions and used as features to train machine learning models, with growth rates as the target. Three models, namely Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machine (SV), were compared, with ANN achieving the highest predictive accuracy for both transcriptomics (94%) and proteomics (96%) datasets. Permutation feature importance analysis of the ANN models identified the top twenty genes and proteins influencing growth rates. Combining results from both transcriptomics and proteomics, eight key transport proteins were found to significantly influence the growth of R. palustris on LBPs. Re-training the ANN using only these eight transport proteins achieved predictive accuracies of 86% and 76% for proteomics and transcriptomics, respectively. This work highlights the potential of ANN-based models to predict growth-associated genes and proteins, shedding light on the metabolic behavior of R. palustris in lignin degradation under aerobic and anaerobic conditions.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Growth rate 
653 |a Lignin 
653 |a Neural networks 
653 |a Protein transport 
653 |a Alcohol 
653 |a Sinapyl alcohol 
653 |a Metabolism 
653 |a Transcriptomics 
653 |a Anaerobic conditions 
653 |a Proteomics 
653 |a Metabolic response 
653 |a Proteins 
653 |a Rhodopseudomonas palustris 
700 1 |a Kathol, Mark 
700 1 |a Nabia Shahreen 
700 1 |a Saha, Rajib 
773 0 |t bioRxiv  |g (Feb 27, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171959504/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.02.21.639544v1