Artificial Neural Network Reveals the Role of Transport Proteins in Rhodopseudomonas palustris CGA009 During Lignin Breakdown Product Catabolism
Պահպանված է:
| Հրատարակված է: | bioRxiv (Feb 27, 2025) |
|---|---|
| Հիմնական հեղինակ: | |
| Այլ հեղինակներ: | , , |
| Հրապարակվել է: |
Cold Spring Harbor Laboratory Press
|
| Խորագրեր: | |
| Առցանց հասանելիություն: | Citation/Abstract Full text outside of ProQuest |
| Ցուցիչներ: |
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3171959504 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2692-8205 | ||
| 024 | 7 | |a 10.1101/2025.02.21.639544 |2 doi | |
| 035 | |a 3171959504 | ||
| 045 | 0 | |b d20250227 | |
| 100 | 1 | |a Chowdhury, Niaz B | |
| 245 | 1 | |a Artificial Neural Network Reveals the Role of Transport Proteins in Rhodopseudomonas palustris CGA009 During Lignin Breakdown Product Catabolism | |
| 260 | |b Cold Spring Harbor Laboratory Press |c Feb 27, 2025 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a Rhodopseudomonas palustris, a versatile bacterium with diverse biotechnological applications, can effectively breakdown lignin, a complex and abundant polymer in plant biomass. This study investigates the metabolic response of R. palustris when catabolizing various lignin breakdown products (LBPs), including the monolignols p coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, p coumarate, sodium ferulate, and kraft lignin. Transcriptomics and proteomics data were generated for those specific LBP breakdown conditions and used as features to train machine learning models, with growth rates as the target. Three models, namely Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machine (SV), were compared, with ANN achieving the highest predictive accuracy for both transcriptomics (94%) and proteomics (96%) datasets. Permutation feature importance analysis of the ANN models identified the top twenty genes and proteins influencing growth rates. Combining results from both transcriptomics and proteomics, eight key transport proteins were found to significantly influence the growth of R. palustris on LBPs. Re-training the ANN using only these eight transport proteins achieved predictive accuracies of 86% and 76% for proteomics and transcriptomics, respectively. This work highlights the potential of ANN-based models to predict growth-associated genes and proteins, shedding light on the metabolic behavior of R. palustris in lignin degradation under aerobic and anaerobic conditions.Competing Interest StatementThe authors have declared no competing interest. | |
| 653 | |a Growth rate | ||
| 653 | |a Lignin | ||
| 653 | |a Neural networks | ||
| 653 | |a Protein transport | ||
| 653 | |a Alcohol | ||
| 653 | |a Sinapyl alcohol | ||
| 653 | |a Metabolism | ||
| 653 | |a Transcriptomics | ||
| 653 | |a Anaerobic conditions | ||
| 653 | |a Proteomics | ||
| 653 | |a Metabolic response | ||
| 653 | |a Proteins | ||
| 653 | |a Rhodopseudomonas palustris | ||
| 700 | 1 | |a Kathol, Mark | |
| 700 | 1 | |a Nabia Shahreen | |
| 700 | 1 | |a Saha, Rajib | |
| 773 | 0 | |t bioRxiv |g (Feb 27, 2025) | |
| 786 | 0 | |d ProQuest |t Biological Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3171959504/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u https://www.biorxiv.org/content/10.1101/2025.02.21.639544v1 |