Satellite-based data for agricultural index insurance: a systematic quantitative literature review

Guardat en:
Dades bibliogràfiques
Publicat a:Natural Hazards and Earth System Sciences vol. 25, no. 2 (2025), p. 913
Autor principal: Nguyen, Thuy T
Altres autors: Shahbaz Mushtaq, Kath, Jarrod, Nguyen-Huy, Thong, Reymondin, Louis
Publicat:
Copernicus GmbH
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3171978688
003 UK-CbPIL
022 |a 1561-8633 
022 |a 1684-9981 
024 7 |a 10.5194/nhess-25-913-2025  |2 doi 
035 |a 3171978688 
045 2 |b d20250101  |b d20251231 
084 |a 123633  |2 nlm 
100 1 |a Nguyen, Thuy T  |u Centre for Applied Climate Sciences, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia 
245 1 |a Satellite-based data for agricultural index insurance: a systematic quantitative literature review 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Index-based insurance (IBI) is an effective tool for managing climate risk and promoting sustainable development. It provides payouts based on a measurable index. Remote sensing data obtained from satellites, planes, UAVs, or drones can be used to design index-based insurance products. However, the extent to which satellite-based data has been used for different crop types and geographical regions has not been systematically explored. To bridge this gap, a systematic quantitative literature review was conducted to examine the use of satellite-based datasets in designing index-based insurance products. The review analyzed 89 global studies on four major types of crops: cereals, pastures and forages, perennial crops, and others (i.e., vegetables, oilseed crops, fruits, nuts, etc.). The analysis revealed a rising interest of developing index-based insurance solutions utilizing satellite-based data, particularly after 2015. Datasets from land surface Earth observation satellites were utilized in 91 % of studies with satellite-based data, outnumbering those from weather satellites. The Normalized Difference Vegetation Index (NDVI) was the most prominent satellite-retrieved vegetation index, featured in 61.2 % of studies utilizing satellite imagery, revealing its effectiveness at designing and developing IBI for various crops. It has also been found that satellite-based vegetation health indices outperform weather indices and reduce basis risk with higher-spatial-resolution data. Most studies have focused on cereal crops, with fewer studies focusing on perennial crops. Countries in Asia and Africa were the most interested regions. However, research has focused on specific countries and has not been adequately spread across different regions, especially developing countries. The review suggests that satellite-based datasets will become increasingly important in designing crop-index-based insurance products. This is due to their potential to reduce basis risk by providing high resolution with adequately long and consistent datasets for data-sparse environments. The review recommends using high-spatial- and high-temporal-resolution satellite datasets to further assess their capability to reduce basis risk. 
651 4 |a Kenya 
653 |a Developing countries 
653 |a Perennial crops 
653 |a Oilseeds 
653 |a Remote sensing 
653 |a Vegetation 
653 |a Satellite imagery 
653 |a Unmanned aerial vehicles 
653 |a Academic disciplines 
653 |a Oilseed crops 
653 |a Developing countries--LDCs 
653 |a Cereal crops 
653 |a Datasets 
653 |a Spatial data 
653 |a Weather index 
653 |a Effectiveness 
653 |a Sustainable development 
653 |a Pasture 
653 |a Satellite observation 
653 |a Normalized difference vegetative index 
653 |a Satellites 
653 |a Agricultural production 
653 |a Weather 
653 |a Environmental risk 
653 |a Time series 
653 |a Keywords 
653 |a Insurance coverage 
653 |a Literature reviews 
653 |a Crops 
653 |a Crop insurance 
653 |a Drought 
653 |a Environmental management 
653 |a Cereals 
653 |a Insurance 
653 |a Meteorological satellites 
653 |a Vegetation index 
653 |a Climate change 
653 |a Environmental 
700 1 |a Shahbaz Mushtaq  |u Centre for Applied Climate Sciences, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia 
700 1 |a Kath, Jarrod  |u Centre for Applied Climate Sciences, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia; School of Agriculture and Environmental Science, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia 
700 1 |a Nguyen-Huy, Thong  |u Centre for Applied Climate Sciences, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia; Faculty of Information Technology, Thanh Do University, Kim Chung, Hoai Duc, Ha Noi 100000, Vietnam 
700 1 |a Reymondin, Louis  |u Bioversity International, Parc scientifique Agropolis II, 1990 Bd de la Lironde, Montpellier, France 
773 0 |t Natural Hazards and Earth System Sciences  |g vol. 25, no. 2 (2025), p. 913 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171978688/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3171978688/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171978688/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch