Exact particle flow Daum-Huang filters for mobile robot localization in occupancy grid maps

Spremljeno u:
Bibliografski detalji
Izdano u:Complex & Intelligent Systems vol. 11, no. 4 (Apr 2025), p. 187
Izdano:
Springer Nature B.V.
Teme:
Online pristup:Citation/Abstract
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3172029418
003 UK-CbPIL
022 |a 2199-4536 
022 |a 2198-6053 
024 7 |a 10.1007/s40747-025-01810-2  |2 doi 
035 |a 3172029418 
045 2 |b d20250401  |b d20250430 
245 1 |a Exact particle flow Daum-Huang filters for mobile robot localization in occupancy grid maps 
260 |b Springer Nature B.V.  |c Apr 2025 
513 |a Journal Article 
520 3 |a In this paper, we present a novel localization algorithm for mobile robots navigating in complex planar environments, a critical capability for various real-world applications such as autonomous driving, robotic assistance, and industrial automation. Although traditional methods such as particle filters and extended Kalman filters have been widely used, there is still room for assessing the capabilities of modern filtering techniques for this task. Building on a recent localization method that employs a chamfer distance-based observation model, derived from an implicit measurement equation, we explore its potential further by incorporating exact particle flow Daum–Huang filters to achieve superior accuracy. Recent advancements have spotlighted Daum–Huang filters as formidable contenders, outshining both the extended Kalman filters and traditional particle filters in various scenarios. We introduce two new Daum–Huang-based localization algorithms and assess their tracking performance through comprehensive simulations and real-world trials. Our algorithms are benchmarked against various methods, including the widely acclaimed Adaptive Monte–Carlo Localization algorithm. Overall, our algorithm demonstrates superior performance compared to the baseline models in simulations and exhibits competitive performance in the evaluated real-world application. 
653 |a Localization method 
653 |a Algorithms 
653 |a Robots 
653 |a Chamfering 
653 |a Performance evaluation 
653 |a Localization 
653 |a Kalman filters 
653 |a Extended Kalman filter 
773 0 |t Complex & Intelligent Systems  |g vol. 11, no. 4 (Apr 2025), p. 187 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3172029418/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3172029418/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch