EFFICIENCY AND PREDICTION IN HUMAN RESOURCE MANAGEMENT USING PYTHON MODULES

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Theoretical and Empirical Researches in Urban Management vol. 20, no. 1 (Feb 2025), p. 88
Yazar: Androniceanu, Mihai
Baskı/Yayın Bilgisi:
Research Centre in Public Administration & Public Services
Konular:
Online Erişim:Citation/Abstract
Full Text
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3172288056
003 UK-CbPIL
022 |a 2065-3913 
022 |a 2065-3921 
022 |a 1842-5712 
035 |a 3172288056 
045 2 |b d20250201  |b d20250228 
084 |a 99009  |2 nlm 
100 1 |a Androniceanu, Mihai  |u Ministry of Transport and Infrastructure, Romanian Railway Authority, Bucharest, Romania 
245 1 |a EFFICIENCY AND PREDICTION IN HUMAN RESOURCE MANAGEMENT USING PYTHON MODULES 
260 |b Research Centre in Public Administration & Public Services  |c Feb 2025 
513 |a Journal Article 
520 3 |a Python has become an increasingly popular platform due to its ability to automate processes, analyze data, and improve the efficiency of human resources management (HR) operations. Python can assist in enhancing recruitment processes, employee performance evaluation, employee satisfaction analysis, and more. Python is a highly popular programming language, known for its simple syntax and versatility, which is why it was chosen for this research. The research aimed to provide HR managers with an analysis model for organizational employee mobility. The specific objectives were: (1) identifying the correlations between research variables and their impact on employee mobility; (2) identifying the main causes of employee mobility; (3) ranking the variables with the most impact on human resources fluctuation; (4) developing predictions regarding the stability of human resources in positions and functions within an organization. The research is a pilot study conducted within an organization using Python modules based on data from the year 2024. The research results show the significant influence on employee mobility exerted by factors such as the level of education, seniority, and age of employees within the sample. Another useful outcome for HR managers is the predictive model obtained with the help of Python modules, which allows them to both analyze and predict the profile of employees with a higher degree of stability within the organization. The research demonstrates how various artificial intelligence applications can be integrated into Python-specific modules to enhance human resource management and organizational efficiency. 
653 |a Software 
653 |a Artificial intelligence 
653 |a Managers 
653 |a Performance evaluation 
653 |a Prediction models 
653 |a Human resource management 
653 |a Mobility 
653 |a Programming languages 
653 |a Efficiency 
653 |a Python 
653 |a Modules 
653 |a Stability 
653 |a Automation 
653 |a Seniority 
653 |a Management 
653 |a Human resources management 
653 |a Variables 
653 |a Recruitment 
653 |a Educational attainment 
653 |a Syntax 
653 |a Predictions 
653 |a Job satisfaction 
653 |a Human resources 
653 |a Organizational research 
653 |a Pilot projects 
653 |a Resource management 
653 |a Satisfaction 
653 |a Research 
653 |a Employees 
653 |a Economic 
773 0 |t Theoretical and Empirical Researches in Urban Management  |g vol. 20, no. 1 (Feb 2025), p. 88 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3172288056/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3172288056/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3172288056/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch