General lightweight framework for vision foundation model supporting multi-task and multi-center medical image analysis

Guardat en:
Dades bibliogràfiques
Publicat a:Nature Communications vol. 16, no. 1 (2025), p. 2097
Publicat:
Nature Publishing Group
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3172628883
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-57427-z  |2 doi 
035 |a 3172628883 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
245 1 |a General lightweight framework for vision foundation model supporting multi-task and multi-center medical image analysis 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The foundation model, trained on extensive and diverse datasets, has shown strong performance across numerous downstream tasks. Nevertheless, its application in the medical domain is significantly hindered by issues such as data volume, heterogeneity, and privacy concerns. Therefore, we propose the Vision Foundation Model General Lightweight (VFMGL) framework, which facilitates the decentralized construction of expert clinical models for various medical tasks. The VFMGL framework transfers general knowledge from large-parameter vision foundation models to construct lightweight, robust expert clinical models tailored to specific medical tasks. Through extensive experiments and analyses across a range of medical tasks and scenarios, we demonstrate that VFMGL achieves superior performance in both medical image classification and segmentation tasks, effectively managing the challenges posed by data heterogeneity. These results underscore the potential of VFMGL in advancing the efficacy and reliability of AI-driven medical diagnostics.Identifying and segmenting medical images plays a crucial role in advancing precision cancer treatment. This study proposes a Vision Foundation Model General Lightweight (VFMGL) framework, which facilitates the decentralized construction of expert clinical models for various medical image tasks. 
653 |a Image classification 
653 |a Image processing 
653 |a Image analysis 
653 |a Heterogeneity 
653 |a Models 
653 |a Image segmentation 
653 |a Medical imaging 
653 |a Cancer therapies 
653 |a Language 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Gynecology 
653 |a Lymphatic system 
653 |a Knowledge 
653 |a Hospitals 
653 |a Natural language processing 
653 |a Endometrial cancer 
653 |a Privacy 
653 |a Economic 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 2097 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3172628883/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3172628883/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch