Smoothie: Efficient Inference of Spatial Co-expression Networks from Denoised Spatial Transcriptomics Data

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:bioRxiv (Mar 2, 2025)
1. Verfasser: Chase Holdener
Weitere Verfasser: Iwijn De Vlaminck
Veröffentlicht:
Cold Spring Harbor Laboratory Press
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3172859094
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.02.26.640406  |2 doi 
035 |a 3172859094 
045 0 |b d20250302 
100 1 |a Chase Holdener 
245 1 |a Smoothie: Efficient Inference of Spatial Co-expression Networks from Denoised Spatial Transcriptomics Data 
260 |b Cold Spring Harbor Laboratory Press  |c Mar 2, 2025 
513 |a Working Paper 
520 3 |a Finding correlations in spatial gene expression is fundamental in spatial transcriptomics, as co-expressed genes within a tissue are linked by regulation, function, pathway, or cell type. Yet, sparsity and noise in spatial transcriptomics data pose significant analytical challenges. Here, we introduce Smoothie, a method that denoises spatial transcriptomics data with Gaussian smoothing and constructs and integrates genome-wide co-expression networks. Utilizing implicit and explicit parallelization, Smoothie scales to datasets exceeding 100 million spatially resolved spots with fast run times and low memory usage. We demonstrate how co-expression networks measured by Smoothie enable precise gene module detection, functional annotation of uncharacterized genes, linkage of gene expression to genome architecture, and multi-sample comparisons to assess stable or dynamic gene expression patterns across tissues, conditions, and time points. Overall, Smoothie provides a scalable and versatile framework for extracting deep biological insights from high-resolution spatial transcriptomics data.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://doi.org/10.5281/zenodo.14933147 
653 |a Gene expression 
653 |a Genomes 
653 |a Transcriptomics 
700 1 |a Iwijn De Vlaminck 
773 0 |t bioRxiv  |g (Mar 2, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3172859094/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.02.26.640406v1