SDUST2023VGGA: a global ocean vertical gradient of gravity anomaly model determined from multidirectional data from mean sea surface

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Earth System Science Data vol. 17, no. 3 (2025), p. 817
Κύριος συγγραφέας: Zhou, Ruichen
Άλλοι συγγραφείς: Guo, Jinyun, Shaoshuai Ya, Sun, Heping, Liu, Xin
Έκδοση:
Copernicus GmbH
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3173153596
003 UK-CbPIL
022 |a 1866-3508 
022 |a 1866-3516 
024 7 |a 10.5194/essd-17-817-2025  |2 doi 
035 |a 3173153596 
045 2 |b d20250101  |b d20251231 
084 |a 123624  |2 nlm 
100 1 |a Zhou, Ruichen  |u College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 
245 1 |a SDUST2023VGGA: a global ocean vertical gradient of gravity anomaly model determined from multidirectional data from mean sea surface 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Satellite altimetry is a vital tool for global ocean observation, providing critical insights into ocean gravity and its gradients. Over the past 6&#xa0;years, satellite data from various space agencies have nearly tripled, facilitating the development of high-precision ocean gravity anomaly and ocean vertical gradient of gravity anomaly&#xa0;(VGGA) models. This study constructs a global ocean VGGA model named SDUST2023VGGA using multidirectional mean sea surface&#xa0;(MSS). To address computational limitations, the global ocean is divided into 72&#xa0;sub-regions. In each sub-region, the DTU21 MSS model and the CNES-CLS22 mean dynamic topography&#xa0;(MDT) model are used to derive the geoid. To mitigate the influence of long-wavelength signals on the calculations, the study subtracts the long-wavelength geoid derived from the XGM2019e_2190 gravity field model from the (full-wavelength) geoid, resulting in a residual (short-wavelength) geoid. To ensure the accuracy of the VGGA calculations, a weighted least-squares method is employed using residual geoid data from a <inline-formula>17′×17′</inline-formula>&#xa0;area surrounding the computation point. This approach effectively accounts for the real ocean environment, thereby enhancing the precision of the calculation results. After combining the VGGA models for all sub-regions, the model's reliability is validated against the SIO V32.1 VGGA (named curv) model. The comparison between the SDUST2023VGGA and the SIO&#xa0;V32.1 model shows a residual mean is <inline-formula>-0.08</inline-formula>&#xa0;Eötvös&#xa0;(E) and the RMS is 8.50 E, demonstrating high consistency on a global scale. Analysis of the differences reveals that the advanced data processing and modeling strategies employed in the DTU21 MSS model enable SDUST2023VGGA to maintain stable performance across varying ocean depths, unaffected by ocean dynamics. The effective use of multidirectional MSS allows for the detailed capture of ocean gravity field information embedded in the MSS model. Analysis across diverse ocean regions demonstrates that the SDUST2023VGGA model successfully reveals the internal structure and mass distribution of the seafloor. The SDUST2023VGGA model is freely available at 10.5281/zenodo.14177000 <xref ref-type="bibr" rid="bib1.bibx68" id="paren.1" />. 
653 |a Ocean floor 
653 |a Satellite data 
653 |a Marine environment 
653 |a Accuracy 
653 |a Data processing 
653 |a Datasets 
653 |a Gravity anomalies 
653 |a Dynamic topography 
653 |a Geoid 
653 |a Topography 
653 |a Oceanography 
653 |a Altimetry 
653 |a Sea level 
653 |a Wavelength 
653 |a Least squares method 
653 |a Gravitational fields 
653 |a Data analysis 
653 |a Sea surface 
653 |a Measurement techniques 
653 |a Gravity field 
653 |a Ocean depths 
653 |a Oceans 
653 |a Satellite altimetry 
653 |a Ocean dynamics 
653 |a Mass distribution 
653 |a Geophysics 
653 |a Ocean circulation 
653 |a Earthquakes 
653 |a Geoids 
653 |a Geodetics 
653 |a Climate science 
653 |a Climate change 
653 |a Environmental 
700 1 |a Guo, Jinyun  |u College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China 
700 1 |a Shaoshuai Ya  |u College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China 
700 1 |a Sun, Heping  |u State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China 
700 1 |a Liu, Xin  |u College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China 
773 0 |t Earth System Science Data  |g vol. 17, no. 3 (2025), p. 817 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3173153596/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3173153596/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3173153596/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch