Emotion-RGC net: A novel approach for emotion recognition in social media using RoBERTa and Graph Neural Networks

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 3 (Mar 2025), p. e0318524
Autor principal: Jiangting Yan
Otros Autores: Pu, Pengju, Jiang, Liheng
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3173338515
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0318524  |2 doi 
035 |a 3173338515 
045 2 |b d20250301  |b d20250331 
084 |a 174835  |2 nlm 
100 1 |a Jiangting Yan 
245 1 |a Emotion-RGC net: A novel approach for emotion recognition in social media using RoBERTa and Graph Neural Networks 
260 |b Public Library of Science  |c Mar 2025 
513 |a Journal Article 
520 3 |a Emotion recognition in social media is a challenging task due to the complex and unstructured nature of user-generated content. In this paper, we propose Emotion-RGC Net, a novel deep learning model that integrates RoBERTa, Graph Neural Networks (GNN), and Conditional Random Fields (CRF) to enhance the accuracy and robustness of emotion classification. RoBERTa is employed for effective feature extraction from unstructured text, GNN captures the propagation and influence of emotions through user interactions, and CRF ensures global consistency in emotion label prediction. We evaluate the proposed model on two widely-used datasets, Sentiment140 and Emotion, demonstrating significant improvements over traditional machine learning models and other deep learning baselines in terms of accuracy, recall, F1-score, and AUC. Emotion-RGC Net achieves an accuracy of 89.70% on Sentiment140 and 88.50% on Emotion, highlighting its effectiveness in handling both coarse- and fine-grained emotion classification tasks. Despite its strong performance, we identify areas for future research, including reducing the model’s reliance on large labeled datasets, improving computational efficiency, and incorporating temporal dynamics to capture emotion evolution in social networks. Our results indicate that Emotion-RGC Net provides a robust solution for emotion recognition in diverse social media contexts. 
653 |a Language 
653 |a Accuracy 
653 |a Deep learning 
653 |a Classification 
653 |a Social networks 
653 |a Conditional random fields 
653 |a Social network analysis 
653 |a Neural networks 
653 |a Machine learning 
653 |a Emotions 
653 |a Retinal ganglion cells 
653 |a User generated content 
653 |a Natural language 
653 |a Propagation 
653 |a Datasets 
653 |a Social organization 
653 |a Emotion recognition 
653 |a Graph neural networks 
653 |a Effectiveness 
653 |a Unstructured data 
653 |a Social interactions 
653 |a Digital media 
653 |a Social 
700 1 |a Pu, Pengju 
700 1 |a Jiang, Liheng 
773 0 |t PLoS One  |g vol. 20, no. 3 (Mar 2025), p. e0318524 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3173338515/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3173338515/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3173338515/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch