Optimization of sequential convolutional networks based on improved hunter-prey algorithm remaining engine life prediction

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Physics: Conference Series vol. 2965, no. 1 (Feb 2025), p. 012039
Autor principal: Zhou, Jialong
Publicado em:
IOP Publishing
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3173383158
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/2965/1/012039  |2 doi 
035 |a 3173383158 
045 2 |b d20250201  |b d20250228 
100 1 |a Zhou, Jialong 
245 1 |a Optimization of sequential convolutional networks based on improved hunter-prey algorithm remaining engine life prediction 
260 |b IOP Publishing  |c Feb 2025 
513 |a Journal Article 
520 3 |a The Remaining Life Prediction of the aeroengine is an important link to realize health detection in maintenance based on condition. To improve the prediction accuracy of the Remaining Useful Life (RUL) of the aero engine, the grid search method is adopted to optimize the hyperparameters in the traditional data-driven life prediction algorithm. In the process, it is easy to fall into problems such as local optimization and high dimensional redundancy characteristics with long life data of aero engine and strong sequence. An improved Hunter Prey Optimizer (HPO) is proposed to optimize the Temporal Convolutional Network (TCN) model THPO-TCN. By constructing causal convolution to capture the high-order timing features of fused multi-sensor data, and using expansive convolution to ensure the capture of the medium and long-term dependencies of the time series, the quality of the initial solution of the global optimization algorithm HPO is guaranteed by using chaotic initialization method (Tent). Then the HPO algorithm is improved to find the optimal hyperparameters of the TCN temporal network by introducing refined reverse population and Gaussian variation strategies. The results of aero engine degradation simulation data show that the proposed THPO-TCN network structure model has a significant advantage over TCN, LSTM, GA-TCN, and the unimproved HPO-TCN network model in the prediction accuracy of engine residual life. 
653 |a Accuracy 
653 |a Algorithms 
653 |a Aerospace engines 
653 |a Life prediction 
653 |a Local optimization 
653 |a Global optimization 
653 |a Optimization 
653 |a Convolution 
653 |a Redundancy 
773 0 |t Journal of Physics: Conference Series  |g vol. 2965, no. 1 (Feb 2025), p. 012039 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3173383158/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3173383158/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch