MAF: An algorithm based on multi-agent characteristics for infrared and visible video fusion

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS One vol. 20, no. 3 (Mar 2025), p. e0315266
Hlavní autor: Liu, Yandong
Další autoři: Ji, Linna, Yang, Fengbao, Guo, Xiaoming
Vydáno:
Public Library of Science
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3173975065
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0315266  |2 doi 
035 |a 3173975065 
045 2 |b d20250301  |b d20250331 
084 |a 174835  |2 nlm 
100 1 |a Liu, Yandong 
245 1 |a MAF: An algorithm based on multi-agent characteristics for infrared and visible video fusion 
260 |b Public Library of Science  |c Mar 2025 
513 |a Journal Article 
520 3 |a Addressing the limitation of existing infrared and visible video fusion models, which fail to dynamically adjust fusion strategies based on video differences, often resulting in suboptimal or failed outcomes, we propose an infrared and visible video fusion algorithm that leverages the autonomous and flexible characteristics of multi-agent systems. First, we analyze the functional architecture of agents and the inherent properties of multi-agent systems to construct a multi-agent fusion model and corresponding fusion agents. Next, we identify regions of interest in each frame of the video sequence, focusing on frames that exhibit significant changes. The multi-agent fusion model then perceives the key distinguishing features between the images to be fused, deploys the appropriate fusion agents, and employs the effectiveness of fusion to infer and determine the fusion algorithms, rules, and parameters, ultimately selecting the optimal fusion strategy. Finally, in the context of a complex fusion process, the multi-agent fusion model performs the fusion task through the collaborative interaction of multiple fusion agents. This approach establishes a multi-layered, dynamically adaptable fusion model, enabling real-time adjustments to the fusion algorithm during the infrared and visible video fusion process. Experimental results demonstrate that our method outperforms existing approaches in preserving key targets in infrared videos and structural details in visible videos. Evaluation metrics indicate that the fusion outcomes obtained using our method achieve optimal values in 66.7% of cases, with sub-optimal and higher values accounting for 80.9%, significantly surpassing the performance of traditional single fusion methods. 
653 |a Deep learning 
653 |a Collaboration 
653 |a Video 
653 |a Algorithms 
653 |a Multilayers 
653 |a Neural networks 
653 |a Decision making 
653 |a Methods 
653 |a Multiagent systems 
653 |a Real time 
653 |a Infrared imaging 
653 |a Efficiency 
653 |a Semantics 
653 |a System theory 
653 |a Environmental 
700 1 |a Ji, Linna 
700 1 |a Yang, Fengbao 
700 1 |a Guo, Xiaoming 
773 0 |t PLoS One  |g vol. 20, no. 3 (Mar 2025), p. e0315266 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3173975065/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3173975065/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3173975065/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch