A Survey on Optimization Algorithms: Challenges and Future Opportunities

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Research in Computer Science vol. 15, no. 1 (Jan-Feb 2024), p. 45
Autor principal: Kumar, Subash
Otros Autores: Sikander Singh Cheema
Publicado:
International Journal of Advanced Research in Computer Science
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3174032476
003 UK-CbPIL
022 |a 0976-5697 
035 |a 3174032476 
045 2 |b d20240101  |b d20240229 
084 |a 198728  |2 nlm 
100 1 |a Kumar, Subash 
245 1 |a A Survey on Optimization Algorithms: Challenges and Future Opportunities 
260 |b International Journal of Advanced Research in Computer Science  |c Jan-Feb 2024 
513 |a Journal Article 
520 3 |a This paper conducts a comprehensive exploration of contemporary optimization algorithms, addressing challenges and outlining potential avenues for future research. The survey encompasses a wide spectrum of optimization techniques employed in various domains, ranging from mathematical programming to machine learning and artificial intelligence. It systematically analyses the inherent challenges faced by existing algorithms, including scalability issues, convergence speed, and adaptability to diverse problem spaces. Furthermore, the paper critically examines the impact of optimization algorithms on real-world applications, considering their effectiveness and limitations. The survey identifies emerging trends, such as hybrid approaches and metaheuristic methods that offer promising directions for overcoming current challenges. By synthesizing the state-of-the-art in optimization algorithms, this paper provides a valuable resource for researchers, practitioners, and decision-makers, guiding them towards addressing existing limitations and unlocking new opportunities in the evolving landscape of optimization research. 
653 |a Algorithms 
653 |a Artificial intelligence 
653 |a Machine learning 
653 |a Mathematical programming 
653 |a Heuristic methods 
653 |a Optimization 
653 |a Validity 
653 |a Computer science 
653 |a Data mining 
653 |a Optimization techniques 
653 |a Genetic algorithms 
653 |a Classification 
653 |a Clustering 
653 |a Heuristic 
653 |a Optimization algorithms 
653 |a Equal rights 
700 1 |a Sikander Singh Cheema 
773 0 |t International Journal of Advanced Research in Computer Science  |g vol. 15, no. 1 (Jan-Feb 2024), p. 45 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3174032476/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3174032476/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch