Integrating big data with KNIME as an alternative without programming code: an application to the PATSTAT patent database

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Journal of Geographical Systems vol. 27, no. 1 (Jan 2025), p. 31
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3174603772
003 UK-CbPIL
022 |a 1435-5930 
022 |a 1435-5949 
024 7 |a 10.1007/s10109-024-00445-0  |2 doi 
035 |a 3174603772 
045 2 |b d20250101  |b d20250131 
084 |a 65726  |2 nlm 
245 1 |a Integrating big data with KNIME as an alternative without programming code: an application to the PATSTAT patent database 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Accessing massive datasets can be challenging for users unfamiliar with programming codes. Combining Konstanz Information Miner (KNIME) and MySQL tools on standard configuration equipment allows for addressing this issue. This research proposal aims to present a methodology that describes the necessary configuration steps in both tools and the required manipulation in KNIME to transmit the information to the MySQL environment for further processing in a database management system (DBMS). In addition, we propose a procedure so that the use of this point-and-click software in research work can gain in reproducibility and, therefore, in credibility in the scientific community. To achieve this, we will use a big database regarding patent applications as a reference, the PATSTAT Global 2023, provided by the European Patent Office (EPO). As well known, patent data can be a valuable source for understanding innovation dynamics and technological trends, whether for studies on companies, sectors, nations or even regions, at aggregated and disaggregated levels. 
653 |a Databases 
653 |a Data base management systems 
653 |a Big Data 
653 |a Patent applications 
653 |a Massive data points 
653 |a Configurations 
653 |a Tools 
653 |a Innovations 
653 |a Social responsibility 
653 |a Machine learning 
653 |a Software 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Trends 
653 |a Data analysis 
653 |a Data science 
653 |a Structured Query Language-SQL 
653 |a Reproducibility 
653 |a Climate change 
653 |a Comparative analysis 
653 |a Patents 
653 |a Economic 
773 0 |t Journal of Geographical Systems  |g vol. 27, no. 1 (Jan 2025), p. 31 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3174603772/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3174603772/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch