Advances in analytical approaches for background parenchymal enhancement in predicting breast tumor response to neoadjuvant chemotherapy: A systematic review

保存先:
書誌詳細
出版年:PLoS One vol. 20, no. 3 (Mar 2025), p. e0317240
第一著者: Thomas, Julius
その他の著者: Malla, Lucas, Benard Shibwabo
出版事項:
Public Library of Science
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3175027211
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0317240  |2 doi 
035 |a 3175027211 
045 2 |b d20250301  |b d20250331 
084 |a 174835  |2 nlm 
100 1 |a Thomas, Julius 
245 1 |a Advances in analytical approaches for background parenchymal enhancement in predicting breast tumor response to neoadjuvant chemotherapy: A systematic review 
260 |b Public Library of Science  |c Mar 2025 
513 |a Evidence Based Healthcare Journal Article 
520 3 |a BackgroundBreast cancer (BC) continues to pose a substantial global health concern, necessitating continuous advancements in therapeutic approaches. Neoadjuvant chemotherapy (NAC) has gained prominence as a key therapeutic strategy, and there is growing interest in the predictive utility of Background Parenchymal Enhancement (BPE) in evaluating the response of breast tumors to NAC. However, the analysis of BPE as a predictive biomarker, along with the techniques used to model BPE changes for accurate and timely predictions of treatment response presents several obstacles. This systematic review aims to thoroughly investigate recent advancements in the analytical methodologies for BPE analysis, and to evaluate their reliability and effectiveness in predicting breast tumor response to NAC, ultimately contributing to the development of personalized and effective therapeutic strategies.MethodsA comprehensive and structured literature search was conducted across key electronic databases, including Cochrane Database of Systematic Reviews, Google Scholar, PubMed, and IEEE Xplore covering articles published up to May 10, 2024. The inclusion criteria targeted studies focusing on breast cancer cohorts treated with NAC, involving both pre-treatment and at least one post-treatment breast dynamic contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) scan, and analyzing BPE utility in predicting breast tumor response to NAC. Methodological quality assessment and data extraction were performed to synthesize findings and identify commonalities and differences among various BPE analytical approaches.ResultsThe search yielded a total of 882 records. After meticulous screening, 78 eligible records were identified, with 13 studies ultimately meeting the inclusion criteria for the systematic review. Analysis of the literature revealed a significant evolution in BPE analysis, from early studies focusing on single time-point BPE analysis to more recent studies adopting longitudinal BPE analysis. The review uncovered several gaps that compromise the accuracy and timeliness of existing longitudinal BPE analysis methods, such as missing data across multiple imaging time points, manual segmentation of the whole-breast region of interest, and over reliance on traditional statistical methods like logistic regression for modeling BPE and pathological complete response (pCR).ConclusionThis review provides a thorough examination of current advancements in analytical approaches for BPE analysis in predicting breast tumor response to NAC. The shift towards longitudinal BPE analysis has highlighted significant gaps, suggesting the need for alternative analytical techniques, particularly in the realm of artificial intelligence (AI). Future longitudinal BPE research work should focus on standardization in longitudinal BPE measurement and analysis, through integration of deep learning-based approaches for automated tumor segmentation, and implementation of advanced AI technique that can better accommodate varied breast tumor responses, non-linear relationships and complex temporal dynamics in BPE datasets, while also handling missing data more effectively. Such integration could lead to more precise and timely predictions of breast tumor responses to NAC, thereby enhancing personalized and effective breast cancer treatment strategies. 
653 |a Databases 
653 |a Tumors 
653 |a Mortality 
653 |a Segmentation 
653 |a Image processing 
653 |a Metabolism 
653 |a Machine learning 
653 |a Evaluation 
653 |a Chemotherapy 
653 |a Missing data 
653 |a Image segmentation 
653 |a Quality control 
653 |a Magnetic resonance imaging 
653 |a Effectiveness 
653 |a Criteria 
653 |a Statistical methods 
653 |a Artificial intelligence 
653 |a Accuracy 
653 |a Public health 
653 |a Breast cancer 
653 |a Cancer therapies 
653 |a Medical imaging 
653 |a Automation 
653 |a Statistical analysis 
653 |a Deep learning 
653 |a Customization 
653 |a Magnetic resonance 
653 |a Literature reviews 
653 |a Patients 
653 |a Quality assessment 
653 |a Biomarkers 
653 |a Global health 
653 |a Systematic review 
653 |a Social 
700 1 |a Malla, Lucas 
700 1 |a Benard Shibwabo 
773 0 |t PLoS One  |g vol. 20, no. 3 (Mar 2025), p. e0317240 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3175027211/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3175027211/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3175027211/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch