Mechanically Stabilized Earth Wall Reliability Analysis Using Response Surface Methodology, ANN, ANFIS and Multi-objective Genetic Algorithm

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Periodica Polytechnica. Civil Engineering vol. 69, no. 1 (2025), p. 159
Κύριος συγγραφέας: Nasser SekfaliDepartment of Architecture, Faculty of Earth Science, Badji Mokhtar University, P. O. B. 12, 23000 Annaba, Algeria
Άλλοι συγγραφείς: Lafifi, Brahim
Έκδοση:
Periodica Polytechnica, Budapest University of Technology and Economics
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3175289103
003 UK-CbPIL
022 |a 0553-6626 
022 |a 1587-3773 
024 7 |a 10.3311/PPci.22830  |2 doi 
035 |a 3175289103 
045 2 |b d20250101  |b d20250331 
084 |a 239228  |2 nlm 
100 1 |a Nasser SekfaliDepartment of Architecture, Faculty of Earth Science, Badji Mokhtar University, P. O. B. 12, 23000 Annaba, Algeria 
245 1 |a Mechanically Stabilized Earth Wall Reliability Analysis Using Response Surface Methodology, ANN, ANFIS and Multi-objective Genetic Algorithm 
260 |b Periodica Polytechnica, Budapest University of Technology and Economics  |c 2025 
513 |a Journal Article 
520 3 |a Considering uncertainty in the analysis of geotechnical structures is a necessary condition for optimal and robust design. An alternative method for studying the reliability of a mechanically reinforced earth wall in granular soil is used to account for these uncertainties more rigorously. This allows for the inclusion of various uncertainties in a mathematical risk formulation based on random variables. The deterministic model is a benchmark taken from the literature used in a numerical simulation to determine the maximum horizontal displacement of the wall. In this case, the serviceability limit state is considered, allowing the wall's actual behavior to be described. ANOVA was used to identify the most influential parameters on the system's response. As uncorrelated random variables, only the parameters (E, φ and γ) were considered. The mathematical model serving as the limit state function was numerically predictedby three methods, response surface methodology (RSM), artificial neural network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS), and their predictive capacities were then compared. The results showed that the ANN model outperformed the RSM and ANFIS models regarding prediction. ANN models and multi-objective genetic algorithm (MOGA) are used to optimize the Hasofer-Lind reliability index. The analysis is then carried out by taking into account the various types of functions of parameter distributions, which allowed us to better appreciate the effects of the uncertainties and identify the set of parameters with a high incidence. 
653 |a Reliability analysis 
653 |a Parameters 
653 |a Mathematical analysis 
653 |a Random variables 
653 |a Algorithms 
653 |a Artificial neural networks 
653 |a Reliability 
653 |a Soil mechanics 
653 |a Mathematical models 
653 |a Response surface methodology 
653 |a Earth reinforcement 
653 |a Multiple objective analysis 
653 |a Variance analysis 
653 |a Uncertainty 
653 |a Limit states 
653 |a Parameter identification 
653 |a Adaptive systems 
653 |a Genetic algorithms 
653 |a Robust design 
653 |a Optimization 
653 |a Neural networks 
653 |a Environmental 
700 1 |a Lafifi, Brahim 
773 0 |t Periodica Polytechnica. Civil Engineering  |g vol. 69, no. 1 (2025), p. 159 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3175289103/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3175289103/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch