A prior information-based multi-population multi-objective optimization for estimating 18F-FDG PET/CT pharmacokinetics of hepatocellular carcinoma

Guardado en:
Detalles Bibliográficos
Publicado en:BMC Medical Imaging vol. 25 (2025), p. 1
Autor principal: Xiong, Yiwei
Otros Autores: Li, Siming, He, Jianfeng, Wang, Shaobo
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3175400482
003 UK-CbPIL
022 |a 1471-2342 
024 7 |a 10.1186/s12880-024-01534-8  |2 doi 
035 |a 3175400482 
045 2 |b d20250101  |b d20251231 
084 |a 58449  |2 nlm 
100 1 |a Xiong, Yiwei 
245 1 |a A prior information-based multi-population multi-objective optimization for estimating <sup>18</sup>F-FDG PET/CT pharmacokinetics of hepatocellular carcinoma 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Background18F fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) pharmacokinetics is an approach for efficiently quantifying perfusion and metabolic processes in the liver, but the conventional single-individual optimization algorithms and single-population optimization algorithms have difficulty obtaining reasonable physiological characteristics from estimated parameters. A prior-based multi-population multi-objective optimization (p-MPMOO) approach using two sub-populations based on two categories of prior information was preliminarily proposed for estimating the 18F-FDG PET/CT pharmacokinetics of patients with hepatocellular carcinoma.MethodsPET data from 24 hepatocellular carcinoma (HCC) tumors of 5-min dynamic PET/CT supplemented with 1-min static PET at 60 min were prospectively collected. A reversible double-input three-compartment model and kinetic parameters (K1, k2, k3, k4, fa, and \(\:{v}_{b}\)) were used to quantify the metabolic information. The single-individual Levenberg–Marquardt (LM) algorithm, single-population algorithms (Particle Swarm Optimization (PSO), Differential Evolution (DE), and Genetic Algorithm (GA)) and p-MPMO optimization algorithms (p-MPMOPSO, p-MPMODE, and p-MPMOGA) were used to estimate the parameters.ResultsThe areas under the curve (AUCs) of the three p-MPMO methods were significantly higher than other methods in K1 and k4 (P < 0.05 in the DeLong test) and the single population optimization in k2 and k3 (P < 0.05), and did not differ from other methods in fa and vb (P > 0.05). Compared with single-population optimization, the three p-MPMO methods improved the significant differences between K1, k2, k3, and k4. The p-MPMOPSO showed significant differences (P < 0.05) in the parameter estimation of k2, k3, k4, and fa. The p-MPMODE is implemented on K1, k2, k3, k4, and fa; The p-MPMOGA does it on all six parameters.ConclusionsThe p-MPMOO approach proposed in this paper performs well for distinguishing HCC tumors from normal liver tissue. 
653 |a Physiology 
653 |a Particle swarm optimization 
653 |a Algorithms 
653 |a Tumors 
653 |a Liver cancer 
653 |a Multiple objective analysis 
653 |a Medical imaging 
653 |a Positron emission tomography 
653 |a Blood 
653 |a Patients 
653 |a Evolutionary computation 
653 |a Pharmacokinetics 
653 |a Hepatocellular carcinoma 
653 |a Parameter estimation 
653 |a Genetic algorithms 
653 |a Computed tomography 
653 |a Positron emission 
653 |a Fluorine isotopes 
653 |a Veins & arteries 
653 |a Glucose 
653 |a Liver 
653 |a Optimization algorithms 
653 |a Ordinary differential equations 
700 1 |a Li, Siming 
700 1 |a He, Jianfeng 
700 1 |a Wang, Shaobo 
773 0 |t BMC Medical Imaging  |g vol. 25 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3175400482/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3175400482/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3175400482/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch