Study on Improving Liquid Carrying Performance of Horizontal Wells With Swirl Jet Composite Device

Guardado en:
Detalles Bibliográficos
Publicado en:Energy Science & Engineering vol. 13, no. 3 (Mar 1, 2025), p. 1223
Autor principal: Liang, Huizhen
Otros Autores: Mu, Lin, Li, Jinyong, Li, Chengzhen, Ma, Jian
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3176113708
003 UK-CbPIL
022 |a 2050-0505 
024 7 |a 10.1002/ese3.2060  |2 doi 
035 |a 3176113708 
045 0 |b d20250301 
084 |a 239634  |2 nlm 
100 1 |a Liang, Huizhen  |u College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China 
245 1 |a Study on Improving Liquid Carrying Performance of Horizontal Wells With Swirl Jet Composite Device 
260 |b John Wiley & Sons, Inc.  |c Mar 1, 2025 
513 |a Journal Article 
520 3 |a ABSTRACT In the later stages of horizontal gas well development, due to insufficient formation energy, the stratified flow of gas and liquid in the horizontal section generates a decrease in the well's liquid‐carrying capacity, accumulating liquid in the wellbore. Since the flow pattern of gas–liquid two‐phase flow in horizontal wells is significantly different from that in vertical wells, existing vertical well liquid removal and gas production technologies cannot be directly applied to address the liquid accumulation issues in horizontal wells. This paper presents a swirl jet composite device that, through the combination of a spiral guide belt and an internal flow channel, effectively integrates the jet and vortex effects, capable of transforming the stratified flow in the horizontal section into an annular flow, thereby enhancing the gas well's liquid‐carrying capacity. This study applies a combination of theoretical, experimental, and simulation methods to conduct computational fluid dynamics analysis on the device's ability to improve the gas well's liquid‐carrying capacity. It deeply investigates the flow characteristics of the gas–liquid two‐phase flow within the device. The results indicate that the device can not only achieve gas–liquid separation by transforming the flow regime from laminar to an orderly annular flow but also increase the axial velocity to extend the effective distance of the swirling section. Compared with the case without the device installed, the liquid phase volume fraction at the bottom of the well is reduced by 85.9%, and the liquid holdup is reduced by 38%. This demonstrates that compared to traditional technologies such as gas‐lift dewatering and gas production, the device can enhance the liquid‐carrying capacity of horizontal wells and effectively address the issue of liquid accumulation in horizontal wells. It provides theoretical guidance and a practical basis for future research on applying swirl jet composite devices to improve the liquid‐carrying capacity of horizontal wells. 
651 4 |a China 
653 |a Flow distribution 
653 |a Liquid phases 
653 |a Flow characteristics 
653 |a Hydrodynamics 
653 |a Fluid dynamics 
653 |a Vortices 
653 |a Swirling 
653 |a Horizontal wells 
653 |a Accumulation 
653 |a Flow channels 
653 |a Annular flow 
653 |a Liquid hold up 
653 |a Free energy 
653 |a Well development 
653 |a Stratified flow 
653 |a Efficiency 
653 |a Carrying capacity 
653 |a Oil and gas production 
653 |a Flow pattern 
653 |a Simulation 
653 |a Velocity 
653 |a Heat of formation 
653 |a Gas wells 
653 |a Laminar flow 
653 |a Dewatering 
653 |a Internal flow 
653 |a Computational fluid dynamics 
653 |a Phase volume fraction 
653 |a Economic 
653 |a Environmental 
700 1 |a Mu, Lin  |u College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China 
700 1 |a Li, Jinyong  |u The Third Oil Production Plant of PetroChina Huabei Oilfield Company, Hejian, China 
700 1 |a Li, Chengzhen  |u College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China 
700 1 |a Ma, Jian  |u College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China 
773 0 |t Energy Science & Engineering  |g vol. 13, no. 3 (Mar 1, 2025), p. 1223 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176113708/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3176113708/fulltext/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176113708/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch