A two stage blood cell detection and classification algorithm based on improved YOLOv7 and EfficientNetv2

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 8427
Veröffentlicht:
Nature Publishing Group
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3176122370
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-91720-7  |2 doi 
035 |a 3176122370 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
245 1 |a A two stage blood cell detection and classification algorithm based on improved YOLOv7 and EfficientNetv2 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Current diagnoses of leukemia are typically performed manually by physicians on the basis of blood cell morphology, leading to challenges such as excessive workload, limited efficiency, and subjective outcomes. To solve the above problems, a two-stage detection method was developed for the automatic detection and identification of blood cells. First, for the blood cell detection task, an improved YOLOv7 blood cell detection model was proposed that integrates multihead attention and the SCYLLA-IoU (SIoU) loss function to accurately locate and classify white blood cells (WBCs), red blood cells (RBCs), and platelets in a full-field image of blood cells. For the white blood cell identification task of detecting network positioning, an improved EfficientNetv2 classification model was subsequently developed, which integrates the atrous spatial pyramid pooling (ASPP) module to increase classification accuracy and employs the balanced cross-entropy (BCE) function to address sample number imbalance. The experiments utilized four publicly accessible datasets: BCCD, LDWBC, LISC, and Raabin. The proposed detection model achieved an average accuracy of 94.7% in detecting and identifying blood cells in the BCCD dataset. With an IoU equal to 0.5, the model attained a mean average precision (mAP) of 97.17%. In the white blood cell classification task, an average precision (AP) of 95.12% and an average recall (AR) of 97% were achieved on the LDWBC, LISC, and Raabin datasets. The experimental results demonstrate that the proposed two-stage detection method detects and identifies blood cells accurately, thereby facilitating automatic detection, classification, and quantification of blood cell images, which can aid doctors in preliminary leukemia diagnosis. 
653 |a Leukemia 
653 |a Erythrocytes 
653 |a Leukocytes 
653 |a Classification 
653 |a Medical personnel 
653 |a Working conditions 
653 |a Blood 
653 |a Cell morphology 
653 |a Environmental 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 8427 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176122370/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176122370/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch